INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While
the most advanced technological means to photograph and reproduce this dacument
have been used, the quality is heavily dependent upon the quality of the original
submitted.

The following explanation of techniques is provided to help you understand
markings or patterns which may appear on this reproduction.

1.

The sign or “‘target’”’ for pages apparently lacking from the document
photographed is “Missing Page(s)’’. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting thru an image and duplicating adjacent
pages to insure you complete continuity.

. When an image on the film is obliterated with a large round black mark, it

is an indication that the photographer suspected that the copy may have
moved during exposure and thus cause a blurred image. You will find a
good image of the page in the adjacent frame.

. When a map, drawing or chart, etc., was part of the material being

photographed the photographer followed a definite method in
“sectioning” the material. It is customary to begin photoing at the upper
left hand corner of a large sheet and to continue photoing from left to
right in equal sections with a small overlap. If necessary, sectioning is
continued again — beginning below the first row and continuing on until
complete. '

. The majority of users indicate that the textual content is of greatest value,

however, a somewhat higher quality reproduction could be made from
“‘photographs” if essential to the understanding of the dissertation. Silver
prints of “‘photographs” may be ordered at additional charge by writing
the Order Department, giving the catalog number, title, author and
specific pages you wish reproduced.

.PLEASE NOTE: Some pages may have indistinct print. Filmed as

received.

Xerox University Microfilms

300 North Zeeb Road
Ann Arbor, Michigan 48106

74-4933

BOARDMAN, Jr., Thomas Leslie, 1948-
ON THE EXPLOITATION OF COMPUTING SYSTEMS AND
COMPUTER GRAPHICS IN THE DEVELOPMENT OF
EFFECTIVE, ECONOMICAL ENGINEERING DESIGN
PROCESSES.

Purdue University, Ph.D., 1973
Engineering, mechanical

| University Microfilms, A XEROX Company , Ann Arbor, Michigan ’

OM THE EXPLOITRTION OF COMPUTING SYSTEMS AMD COMPUTER
GRAFPHICS IN THE DEVELOFMENT OF EFFECTIWE, ECOMNOHMICHAL

EMGIMEERIMG DESIGH PROCESSES

A Thesis

Submitted to the Facul ty

nl
-+

FPurdue University

by

Thomas Leslie Boardman, Jr.

In Partial_Fulfi}Iment of the
Reqgquirements fov ﬁha Legree
of
Doctor of Fhilozophy

RAugust 1373

o

Grad. School

PURDUE UNIVERSITY
Graduate School
This is to certify that the thesis prepared
By____ Thomas Leslie Boardman, Jr.

Entitled On the Exploitation of Computing Systems and Computer

Graphi i i i i i i SSes.

Complies with the University regulations and that it meets the accepted
standards of the Graduate School with respect to originality and quality

For the degree of:

Doctor of Philosophy

Signed by the final examining committee:

K E _Hts chairman
Q. Ste
Qg Gl

Approved by the head of school or department:‘

“ Qf 19X Ag« /S
To the librarian:

is not
This thesis #gingd to be regarded as confidential

X E Full

Professor in charge' of thethesis

ACKMOWLEDGMENTS

The author wishes to expresz his appraciation
specifically to thres of the people who have made not aonly
this dissertation, but all the work involved in attaining
this degzree, possible. Dick Garrett, whose foresight
recoghizing the need for this research early enough to
render 1t a significant contribution, has for four vears
provided support and encouragement, malntaining an
envirarment of freedom to work and learn. John Steele has
of fered hundreds of hours of techrical advice covering the
most general to the most specific detaile aof the dats
concentrator system. Finally, and oerhaps most important,
Mo Gurn has giwven her confidence, advice, and patience over
a wvery difficult couple of years. Striving to squal her
competence has fundamentally influenced the quality of the
pages which follow and the work they refleact.

)

iii

THBLE GF COMTENTS

LIST OF THBLES. . it ie it nneniantnnanaenans e o wi
LIST OF FIGURES. . i it ittt i it sin st aanastnssanesnaannns wii
3 T
IMTRODUCTIOM. & vt v enivsanenataaanncnennn. PR e 1
Declining Cost of Computer and Graphic Hardware..... &
Reducing Main Computer Load for Timeszharing Systems o
Device Independent Representation of Images 3
Terminal Interface Message Processing............ 11

The Designer as a General Purpose Froblem Solwver.... 16

An Example System - THE HOUSING GRME.............. 18

A DATR CONCEMTRRTOR TIMEQHQRING e S 2 o T 21
Machine Characteristics. ...ttt ire e .. 23
Buffer Hilocation and Management.., 25
Mon-interrupt Time Processing. oo, 27
Interrupt Time Processing. ... e et inenrannnrasen .. 36
Communication with the CDC B500......... ..o, 40
Function 000: Read Physical Record,...... e e HZ
Function 010: Buffered Read............iiiiin.. 44

Furction 004: Write Fhysical Record. on.. yy

Function 014: Buffered Write............ I 1
Function 024: UWrite End of Record............ c.o.. UE
Function 034%: Write End of File.......icivivnice HE
Function 050: Rewind the Terminal File..... cehens 4y
Function 204%: Write End of Information.e.ee.. 47
Function 500: Reguest Terminal........o0 ... wae s U7
Function S04: Reset the Terminal ..ot iien v HE
Function 520: Read Terminal Mode Flags........... Ha
Function 524: Set Terminal Mode Flags.. ... 0000 51
Function 530: Read Character Information......... 51
Furction 534: Set Charaster Information.......... 53
Function 560: Release Terminal............. cee... 53
Function S64: Togzle Suppress Bit....ee.eeo.... .. 53
Function 570: Intsrmachine Communication......... 53
Commurnication with Terminals....... ...t veeeaas 55
Nor-Blocked Single Terminal Communicstion........ 56
Rlocked Single Terminal Commurication............ 58
Multiple Terminal Communication............ caea £3
Monitor Functions.......... ... Cea e e seeens BT
Character Converslon. . e . ie et eanneeasssens cees.. 7O
A COMPUTER COURSE FOR THE EMGIMEERIMG DESIGRER. A
Graphic Output Devices..........oiiveiniinoin, B
Graphic InpuT DevicEs. s ittt it i e i i wea. TS
Information Fepresentation within Digital Computers. 77
Digital Computer Characteristics...iviie e ernnans 74
Memory Reference Instructions......ooinennasen «.. GO
Instructions which HAlter ths Hoocumulator..... R -
Test and Skip Insftructions. ..., .o iiiiiiiann . 83
Irput 7 Output Instructions.t ieennan 24
Instructions which Corntyrol the Display.......... .84
Exgeoution Cycles...ooviiiiiiiiiianaianian, ceanan g4

¥

I T vee. BE

Assembly Language Equivalents of FORTRAM Statemsnts. 87

Communication with External Devices......... . vt 91
Three Dimenszional Plotting... ittt 93
Intersectlons. ot i i st ittt snaaanssnnnsas g4

Chiject Translation. . .ot ittt iaienanenissnns 54
Perzpective Drawing. e it e ier e a5

Hidden Line Remowval. oo ittt i iiin i i e anns Sk
Timesharing Systems. .ot i e rnnrassos Cere e 5
Compilation, Hszembly, and Loading.................. 105
Digital Processing of Analog Information............ 113

Ar EXAMPLE ZYSTEM - THE HOUSIMNG GAME. . . i v e s et e e i e e n s 117
Room Specification..... i eiin i inenntanaanas 113
Feature Specification........ ...t ree e 120
Observation Information.... .ot iennsn 121

An Interactive Floor Plan Sketchpad................. 122
Housing System Graphic Output............. 123

The Interface to the Computer Grapblcs System....... 132
SUMMARY AMND COMCLUSIOMS. . .ttt i i i ettt i v tr s aens 134
I O o e e 1 137
FPPEMDICES. i vvvvnennns s e e 14D
Appendix A- Interactive Communication Package....... 140

Fprpendix B- Device Indspendent Plotting Language....157

vi

LIST OF THELES

Table 1. The Plotting Constants Table. oo ..o iinnen 206
Tab]e 2. CDC /508 to AMSCII Conwversion Table... oo e.. 210

Figure
Figure
Figure
Fizure
Figure
Figure
Figure
Figure

Figure

-
.

M FE W N

|~ M

€]

wii

LIST OF FIGURES

Schematic of the Purdue Computing System..... 13
The Modcomp Data Concentirator Sysatem..... —_—
Example Housing Qutput on the Line Printer...125

Examplie Housing
Example Housing
Example Housing
Example Housing
Example Housing

Exanple Housing

V)

Cutput on the Teletype......

P . Y . .

Output on the ARDS Terminal..
Input on the IMLAC Terminal..
Qutput on the GOULD Plotter..

oo

L]

ST 0 T AT B
|

Output on the Drum Flotter...130
Qutput on the Flatbed Plattert 3t

RESTERCT

Floardmao, Thomss testie, Jdyo Fheo Do, Pordoe Lhidversd by,
Flugu=t 1373, On Phu Exploitation of Conputing Systems and
Compt o Girraabd oo i 1ﬂm= Development of EHifectlve,

Foonomical Engincoring Design Frocessos, Major Frofessor:
e Hichard f_ Goreett,

It is an esasily defensible point that the regquiremsnts

process are steadily becoming

L=

of the snginesring deslig
'.

r"" (]
- O
|,..|-
[N
m

[iul et~ compl e, Campe =z forcimg more lngeniows,
sfficient products at lowsr costs, Safety and adverTising
1l

forcing improved reliablility, Thesz forces are placing

-

|w|

%]
<

vtions as well as consumer demands are simultaneous AR

more and more pressure on the enginesring designer who can

therefore naturally scpect new tools to ald hiim in

satizfying these demands. This dissertation discusses the
1

oitation of one such tool - the digital computer,

The computer is an ideal tool for the enginesring
desighner. Itz high speed, accurste calculation capabl W
N]

ot
allows it to periorm evaluation or simulation of pote

designs. Ita large memory &llows it to ztore results of
several design tralls for compar o, Firmally, its
A

Bility for raplid grasphic owtput allows the desigrer
13

2v wizualize complex designs. Unfortunately, like
any other tonl, the computer must be understood and readily
avallakle at justifiable cost, before 1t can be effectively

Lused.

Actually, the computer has been used for over a decade

by engineers. This wusage, however, has been Targely
confined +to FORTRRAM-type batch programs performing analysis

on systems of engineesring equations. It has not included
extensive graphical input/output o intsractive

communication with programs due largely to the high cost

associated with interactive computing. In addition, where

graphic or interactive systems were avallable, they were
7 H

developed by computer sci

l

N
L'[I

¢

atists (not engineers) and were
often not corwverniently used or fully understood by
gnginesring designers

This dissertation discusses”™ the development of a
graphics system suitakle tor designer's pictorial
communication with executing computer programs. It further

discusses the development of & data concentrator system

capable of allowing remote terminzl access to the computer
at communication vates fast enough for rapid graghical
inputfoutput and with minimum draln of the computing system.

Finally, this dissertation discusses the development of
& course, intended to provide the undergraduate enginsering
student an understandinq of this computer tool to a levsl
that he can not on]w utitize, but himself develop, the type

of graphics timesharing system discussed hereln.

A1l three of the abowe stated objsctiwves of this
dissertation wers successstully met. A FORTRHM-callable
package of graphics routines allows convenient production
of twa Qr three dimensional, hidden line removed,

pprupELtluP drawings. raphic output can be plotted on

Ul
)]
~+
\{]
—+
l_l .
0

printers, telatype: and dynamic terminal devices,
ard hard copy deu1ces with wvirtually no calling-program
modification. H data concentrator timesharing system
permits up to thirty terminals to communicats with a COC

6500 computer at speesds between 110 and £0,000 baud with

ininimum overhead on the EB500. Thirdly, a tws course
sequence has besn added to the Mechanical Enginesring
curriculum which detalls the uwtilization and implementation
of graphics timesharing systems for enginssring design

Finally, an example praoblem, the design of modular housing
i

pte
w

solved wsing the graphics and timesharing zystems as

a demonstration of the usefulnezz of this work a3 an
engineering design tool.

INTRCDUCTICM

The engineering design pr e55 1s bhecoming continuously
more complex. Overdesign to insures reliability is no lTonger

feasible in light of competitive economics, but competition

also requires rellability. Reduced coszts possible with
mass production demand the consideration of willions of
off-the-sh=l{ compornents in the design process. Space Hge
technology requires miniaturization. Components must he
lighter weight reguiring rew materials, Mmore compact
requiring finsr tolerances, and generally more complex
requiring greater visualization capabiliti of the
designer.

The sciences are providing better materials for

construction and madels for evalustion of new products,
but providing lTittle for the actual creative design process.
Computsr systems can help bridge the gap. The wast,
accurate, easily-accessable storage capability of the
digital computer can allow the designer to utilize off-the-
shelf components and surwey solutions o similar design
problems. The extremely high-speed, accurate computation
capability of the computer can help the desigrer evaluate
to insure relishility without overdesign. The flexible
graphic output capability of computer egulipment can erhance

the vizualization of complex problems.

These are not new lideas. A decade ago Ivan
Sutherland’s "Sketchpad” [12] discussed them, marking the

heginning of contemporary advancement in engineering design

using interactive computer graphics. The reguirements of
the designer are surely greater as amount of technical
nce 1950 [13]. Further,

rarchical representation of

knowl edge 5] doubl ed

Qr

‘ 51
Sutherland's concept of hie
processes in terms of thelr component parts has become an
essential ingredient of any computer design system. Bt
such general purpose systems have simply not proliferated

55 many believed they would., In the words of E. H. Gibley
_i

in 1370 [2], swuch system designers "are divided into two
CEMPS ... who either trisd rather unsuccessfully to
implement a gensrallized graphic system, or =lss trisd to
produce & working application program. The later set of
irvestigators hawve produced a fa2w useful packages...'.

Three factors have stifled the uses of digital
computers through interactive grapbic terminads. First

aotl
was the high purchase cost of computer graphic eguipment.

Second, for thoss who could purchase such terminals, the
load 1inwolked by them on central computing facilitiss
general ly slowed to a standstill payroll, accounting,
scheduling, and other batch type requiremsnts of such
facilities. This led to either "graveyard shift”

development and use of design systems, o the purchase of
5 dedicated large-scale computer for sach four to six
terminals at costs in the millionz of dollars. Finzlly,
as. indicated hy Sikley [2] abowve, general purpoze problem
solvers have proven impossible to dewelop. Trier supports
the failure of gensral purpose design programs in a suwrvey

i
paper [8) "... the ready made program, ..., may not guite

—
i
]
I
=
o
]
hacl
—
[yl

meet his specific requiremsnt; it to anzwer any

probklem in his field sxcept his special one, : .

Sibley summarizes the state of general graphic problem

solvers [2] as ."... IF we had a generalized graphic system
ay, could industry afford 1o use

v
L]

ot

it7... we still have

‘o

w

to admit that the answsr is NO!" Despite such problems,

the need for computer graphics in the solution to design

problems still exists. It is therefore the intent of this
2 dav

making computer graphics an economical design toaol.

dissertation to discuss th velopment of an appreoach to

The first of the three factors which have stifled
computer design systems is the cost of graphic and computer
equipment. Most engineering design problems are real world
problems. They inveolve continuously varving (analozl input
and output and often must be considered in a real-time
frame. Ewen if the design problem itse)lf doss not regulre
& vreal time, analog envirorment, the designer is uwsually
much more sffective if he can interact with the computer

in a rveal-times, analog mode.

Unfortunately, the high cost of large scale computers
usual lv demands they be timeshared betwesen many users and
communicate in an incrsmental (digitsl) mode, or operate
at extremely reduced efficiency. This is in direct
violation to the analog, real time ervironment englineering
design ssems to reqgulre. The sailability of low cost
(under $10,000) mini—computers in the last sewveral wvears
has provided a soclution to thi prokd en. It irwolves
including a mini-computer in the system bstwsen the designer
and the large scale computer. This intermediate computer
can operate in a real time mode accepting and producing
analog information for the designer while communicating
with the larger machine in & digital, timesharsd mode,
The increasingly declining price of mini-computers has put
graphic and interachtive computing devices within reszonable

cost.

Not only have the reduced mini-computer costs made
the initial dollar investment in graphic equipment
reasonable, they allow mini-computers to be wused to
significantly reduce the load on the large scale computing
system. R data concentrator mini-computer betwesn the
terminals and the large scale machine and the mul ticomputer
system required to interface the machines represent the
method of reducing central computer loading devsloped
herein. '

The final problem is that of developing general purpose
problem solwvers to interact with engineers for large classes
of problems. It has been showun [3] that such problem
solvers are wvirtually impossible to write and equally
difficult to learn to use efisctively. The proposed
solution herein 1is to provide englneering designers with
adequate background and experience at the undergraduate

level 1to develop specific purposs problem solvers as they

a3

encounter design problems in their work.
~ In summary, it is proposed that the combination of
(1) using mini-computers as interface units to lower the
cost of graphic and interactive equipment, (2) using data
concentrators and appropriate mul ticomputer operating
systems to reduce the load on large scale computers, and
(3} providing engineering students with background and
experience in programming computers fo solwve enginesring
problems, thereby making the designer the zeneral purpose
]

raphic an =2coromica

o

a

problem solver, can make computer

design twol.

This disseration discusses the conceptual design of
all three components of the proposed solution. It further

discusss

o
,

the .actual implementation of many portlons

i

SE5
the resulting system and an example of 1its effectivenss

b

in ths design of modular housing. [A single individual,
however, could rnot possibly implement and prove ocut a system
of this magnitude. Much work on the terminal end of the
system was done by other graduste students in the Computer
Rided Design Group at Purdue, while timesharing system
software for thes Control Data 6500 was developed by the
Purdue University Computing Center staif.]

[n 7]

DECLIMING COST OF COMPUTER GRAPHIC HARDWARE

The notion that computer and graphic dewvice sts have
nt with
d. This

S
fallen over the past decads i3 ocertainly consiste
in 1
dissertation is not concerned with why o how this has
the

the experience of anyones the computer ie

happened, bkut 1t 1is concernsd with exploiting | cosetr

G

05t hardware in the development of graphical design tools.
Since the declining costs are of significant importance
to providing economical design systems, reference is made
below to the gxtent and consequences of such cost
Feductions,

By far the most comprehensive survey of computing cost
changss was done by Kenneth Knlght in khis Ph.D. thesis
[17] and two follow-up papers [18 and 19). Knight svaluate
rearly four hundred commercilally-avallakle computers in
terms of operations per dollar. The results are striking.
First, +the averazge increase in this opsrations per dollar
gfficisncy is four to five percent per month, o over sighty
percent per year, over twenty-five vyears. In addition,
the average time that & specific chine was the most

efficient was less than fourtesn months.

The costs of graphic devices have declined equally
rapidly as they employ mini-computers to drive the display
on amplifiers and interact with input devices,

o example compares a CDC 252 with purchase price

cifi
of 250,000 dollars 1 19E7T with a rew Imlac terminal with

purchase price of 15,000 dollars. The Imlac haz hbstter
resolution, plcture guality,]ight pen input responss, and
includes a general purpose mini-computer which the 252 does
not. In addition, improved technology with memory type
CRT deflection syvstems has made high resolution memory

- scopes. avallakle for under 5,000 doilars.

The decreased harduare costs along with rapid
production of new machines have left a gap over the earlier,
more expensive machines. Manufacturer supplied software
is rarely wuseful 1if avallable at all. In adcition,
evaluation of the machine's capabilities is more difficult
since few worthwhile applicetion +type programs have been
devel oped, This requiréa the enginesring design people
to have sufficient techrnical background and experience in

using design systems to adeguatels

/ aelect the graphics and
mini-computer hardware, ard supervise thie software
devel opment required to make the hardware act as an

sfficient design tool. Providing such background and

neerl

-

&
experience to the eng 1y undergraduate studsnt is the

i
topic of & portion of this dissertation discussed below,

REDUCING MAIN COMPUTER LOAD FOR TIMESHRRING SWSTEMS

Interactive design using graphic input/output places
a triple burden on central computer facilities. Most
obvious iz the potentially large amounts of process sor time
reguired to perform analysisz and evalustion of significant.
enginearing problems. This, of course, can be reduced with
more efficient programming techrigues - throuzh better

designer understanding of programming and the systen b

—

[§1]

is wsing, The inclusion of programming and computing svstem

"'Q
D'I

design in the undergrasduate enginesring curriculum 1is

discussed bslow as a portion of this dissert:

o
—
He
il
=

Beyond

improving efficisrcy, however, there = little that can
be donge except to recognize that the arge scale computer

=
is included in the system to perform such complicated

aralysis (otherwise the mini-computers would do all the
computing) and we must expect to utilize some of its pouer.
The second burden on central computer facil

duly & i
the wutilization of mass storage space which thes typical
1

i
large graphic input/output files reguire. A dewice
indspendent . plotting language is incorporated [14] in this
system as a uniform means of esxpressing gra
any input/output device. It is desigrned to periorm maximum
compression of the information to m ze the amount of

i i
disk storage space requived for its storage. [A Computer
[

Center Document by M. H. Gunn is included as Appsndix
B which fully describes the larguage.] Further, since the
language iz device independent, &l)l graphic wunits and
processes are 1irked by 1t, and only ons copy of an image
need be saved for plotting on any graphic unit. Three
dimensional representation with hidden line removal is

included to enhance wvisualization of complex components

with simplified input and mininmum storage space regquired.

R third burden on timesharing systems 1is +the actual
character 3% character communication with external
terminatl s. Character corwversion, bullding line images,
prompting for input, and other basic communication tasks
can be performed wvery rapidly by the large scales machine.
If, however, this machine must swap out compute type
programs for each character proceszed, the overhead (wasted

processing time) becomss significant. To eliminate this

'}

problemn, a data concentrator mini-computer 1is included in
the =ystem hetween the terminals and the large scale
machine.

Device Independent Representation of Images

Experience with remote terminal use of t

imesharing
systems £15] indicates that terminal mass storage
requirements are substantially greater than hatch [card
reader/line printer) requirements. This is reasonable.

The batch user "stores” his information on cards which are

gasily editted, transported, and can ke read 1intoc the

iy
o

computer for each run at out 16,000 bits per second.

The terminal user, however, generally has only paper tape

35 a storage media with its obvious editting and spesd (150

bits per second) limitations.

1 users are faced with

Furthermore, graphics termin

— e
ri- u

i

the problem of plotting on severa vpes of terminals and

"hard copy" devices. This twpically leads to multiple

w

copies of the same Image stored on disk unlts with one copy
ce

for =sach output device available. These graphlic files also
tend to make inefficient use of disk space since thay are
-]

formatted for their spective hardware dBiIELTIDn systems.

10

In order to reduce the mass storage reguirements of
graphic 1images and provide a uniform measns of plotting from
FORTRAMN, & dewice independent plotting langua

as part of

‘2 1s included

0’!’1

this dissertation. It consists of a compressed
binary file, which is fully parameterized so that mindimoum
disk space is utilized consistent with resolution and size
requiresments, into which all images asre coded, =et of
FORTRAMN compatible subroutines hawve been developed to

produce this file from a language compatible with the design
engineer. Then, & set of post processors can he used to
read the file and conwvert 1t to the particular format
required for s=ach of the graphic output devices available,
This permits a single, compressed copy of any image to be

stored for display on any plotting device.

Although most processes regquire aonly two dimensionsl
plotting, three and {fowr dimensional information can be
stored. The language has heen nterfaced to a thres

dimensional perspectivs plottin? pachafe with hidden line

lJl

it

o

3

5

o
1

ﬁi

:‘

[I'I

+ -

removal. This allows the de: o easzily produce
i

three dimersiona 25, store them in compressed form,
and then plot them from any wiewing pulnt an two dimens =3
devices with hidc 1

A final feature of this devics independent plotting
Tanguage 1s that 1t can link graphic information processing
programs with a common input baze. In thisz way, analysis

programs which jrocess plictorial information from various

graphic terminals can use a standard input routine since
data from any of the tern ninals is convertsd to the Tarnguage
Chy system conversion routines. In addition, i1nput from

any terminal 1s automatically available for output to any
plotting device.

[

11

Terminal Interface Messase Processing

Analysis of most intesractive design svstems indicates
the largest portion of their cost comes from the central
computer time reguired. This tine is becomilng an

c
increasingly larger portion as mini-computer and graphic

as
device costs fall. Currently, central computers like IBEM

370"s or CDC €500"'s cost nearly one hundred times more than
grraphic terminalas with mini-computers. Further analwysis
indicates that much of the central computer time used for
timesharing goes for trivial but tediouws tasks such as
character code conwversion, prompting, bullding lTines into
disk sector format, and swapping the terminal's program
into memory perhaps on a swap per character basis. A

significant portion of this dissertation discusses including
a mini-computer in the system betwsen the graphic terminal
devices and the central computer to perform these +trivial

tasks and thereby reduce the load on the central machine.

sed

b

The data concentrator concept is not new., It i
by General Electric Timssharing Services and by the
University of Michigan Timesharing System [8]1([208]1[21] as
well as many others. But these wesre designed to support
low speed a]phanumeric communication betwsen teletype type
terminals and the timesharing computer. [1]1 "A good exanple
is in message switching where mini-computers

&
they can handle effectively the switching of messages

setween as many as or 128 low speed (ten character per
bet 'y 100 28 low speesd (t } t P
second) communication lines." Graphic terminals, process

b=
control equipment, and mini-computsrs supporting instruments
and devices, howewer, must opsirate above sixkty characters
per second, preferakly between 1000 armd 5000 characters
O

per second, with binary (hot alphanumeric) cammurlcatlan.

42

o

For communication with timesharing terminals, the

B
]

largest portion of central processor time used swappling

the usevr program into memory, this being well above the

\

input/output or request processing time. This demands the
data concentrator code buffer.requa5t5 and responsses ahead
g0 a5 to reduce the number of swaps. The data concentrator
system developed as part of the disssrtation runs on a
Modcomp III Communications Computer buffering data into
dislk sector size blocks for transfer to the CODC BSOO. This
sector buffering makes each terminal look to the 6500 liks
a separate disk file so0 that programs executing on the B500
(central computer) can communicate with the terminals using
the same system routines already available for disk access,
This approach, combined with character conversion, data
compression, prompting, and other terminsl driving features
of the Modocomp system, rveduces the swapping by a factar
of more than one hundred over character processors or by

about twenty ower conventional data concentrators.

The Modoomp system 1 designed to support thirty
terminals running between sixty and 5000 characters per
secand an a per line kasis, . The interline time does not

= gd two tenths of a second {(double buffering pgrmits
=

“CE
interline times of wrder ten millisecands 1n maost cas
=

)
although longer delays are possible bestween sector size
buffers (640 characters). With sufficient core memory
(about 1000 words per terminal) the sector blocks are also

buffered ahead so that the E500 nsed only swap the ussr’s

program each thres to six s=seconds for continuous input/

output, This means the entire system supports a minimum
sustained transfer rate of ore sector per sescond (G40
charscters per second) for all thivrty terminals
simul taneously, A complete schematic of ths ES500 system

1nc!ud1ng the Madcomp is included as Figure 1. In addition,

-

Figure 2 shows & detailed schematd of the Madconm
configuration.

-1

MR Pir,

-
4%}

SYSTEM _ FOUR
¥ CONTROL DATA 43
D1SK 1 eSew 1z TAPE
. 7 11
pRiVEs |— 3 4 5 & 7 1& DRIVES
cDC 252
GRAPHICS
CONSOLE CARD
READERS
PERMANENT
USER FILE .
DISK STORAGE L INE
| PRINTERS
PAPER D1sK COULD OPERATORS
TAPE PACKS PLOTTER
1/0 CONSOLE
MODCOMP IBM 7094 IBM 7094
pAtA DATA DATA
CONCENTATOR CONCENTRATOR CONCENTRATOR

Figure 1. Schematic of the Purdues Computing System.

[

'3

AG ENGINEERING

110 TO READLR
3607 BAUD PRINTER
T " TV 50D0Y
r YPE TELETYPE
ELETYPES s
CTLR
POP KRANNERT REMOTE SITE
11745 T
< MODCOMP
Se00 BAUD | 4 CONCENTRATOR
IMLAC
TERMINALS SYSTEM
62w TO 450K BAUD
50PPY BAUD L5 UINE TO
DEVICES CDC 650w
480 BAUD SYNCHRONQUS COMMUNICATION é
FORT WAYNE HAMMOND WESTVILLE
1SM 360/22 |BM 360722 IBM 362,22
READER READER READER
PRINTER PRINTER PRINTER
PUNCH PUNCH PUNCH
TELETYPE TELETYPE TELETYPE

Figure 2. The Modcomp Data Concentrator System

fF

In addition to supporting high speed communication
with graphic terminals with low central computer owverhead,
the Modcomp system includes a wvariety of data exchange
options. Character code conversion is performed from the
6500°s character =et to HNSCII or as many as sewven other
corwersion sets for non-ANSCII devices. Furthsr, binary
communication has been included for tramsfer of display
files or mini-computer core images. This form of
communication 1is count controlled so that the Modoomp acts
as a straight wire (eight bits wide). hbetwsen user E500
programs and remotes terminals. A1l forms of data transfer
are optiormally blocked with several data wverification

schemes available to insure ervror {fres communication.

(4

THE DESIGNER AS M GENERAL PURFOSE PROBLEM SOLVER

Providing a sufficiently broad background to the
undergraduate enginesring student so that he can solve a

wide eclass of design problems is certainly

\‘4

& recognized
1 engineser,

goal of owr educational process. The mechanica
for instance iz expected 1o be versed in cal

culus, fluld
dynamics, thermodynamics, heat and mass transfer, mechanics,

controls, instrumentation, etc. Unfortunately, the list
includes only a very brief exposure to computing in most
school s. Thiz, coupled with the growing need for computer
solutions to industrial problems [T], haz led to any of

three results. Most dramatic, arncd least

l'_I'I

uccessiul [2],
companies have undertaken the devzlopment of general purpose
problem solvers which (in the {inished product) assume no
computer knowledge of the englneering wser, Second, [8]
"a brand new breed of engineesr is emerging whose lifetime

occupation seems to be to explain the wse of computers to

others.” Or finally, the sngineer becomss a computer
scientist, forsaking his enginesring baclkground altogether.
[8] "He discovers an unexpected flair for gprogramming, ...,
t becomes an end in itself, and his beautiful neus

i
algorithms have to go ssarching for problems to solwe.”

Mone of these results are adeguate [7]. General
purpose problem solvers take too long to dewelop and are
too clumsy to use effectively. Englheesrs in an industrial
atmosphere are hard pressed 1 transfer sufficient sxpertise

to thelr nom-computer colleague:

ui

to snable them to develop
useful design programs. The engineer turned scientist tends
te lack sufficient interest in enginesring probdems, This
nzed for, but lack of, sufficient computer background of
the enginesring designer seems to demand addition . to the
enginsering curricul um. [7] "The committes [National
Science Foundation, Committes on Education in Jure, 1371]

St

17

strongly believes that ... engineering deparitments must
include an undergraduate engineering option that will
provide the student with a basic and comprehensive knowledze
of the principles that underlie +the organization, design,
and application of digital processing systems.”

The development of & two course option for the
erngineering designer represents a significant portion of

this dissertation, Rssuming a working knowledge of FORTRAM,

its goal is to develop a basic understanding of computing
systems and an expertise in thelr use to solve englneering

design problems. The general toplcs covered are a3 follows:

]

Graphic Input and Output Devices
Tnformati Representatiun within the Computer
Hardware Characteristics of the Digital Computer

Hesembly La
Communication with External Devices

age

Cif!

Three Dimensional Plotting
Timesharing Syste

Compilation, Hssembiy, and Loading

Digital Processing of Analog Information

N

AN ExAMFLE SYSTEM - THE HOUSING GRME

In order to clarify the various aspects of the computer
aided graphical design system discussed herein, and to
demonstrate its potential to the engineering design process,
an example application is included. It involwves the design

of low cost, modular housing.

Retually, two other mechanical design systems hawve
been implemented 1in parallel with this system, closely
following the philosophy developed herein. These systems
were developed using a package of interactive communication
routines [described in FAppendix Al which provided the

esential interactive capabllities while the {full TModcomp

lTl Ql

system was being developed. The first, the =zubject of a
Fh.D. thesis by Walt

of kitematis linkages. I+ relies bhea

([l

r 8. Reed [24], involves the desi
] at

systems and intevrface vroutines developed as part of this
i

<
e

~

an DpEr:

dissertation. The second, the subject of a Ph.D. theasi
by John L. Palmer [25], irvolves the design of axially
symmetric rotating machines. It demonstrates the first
slignificant project developad by & student of tha
enginsering computer courses propossed and Implemented as
part of this woarl:.

The intent of this modular housing design bexamp]e is
ta demonstrate how the features of this system can be
effectively and esconomically used to produce a practical
design tool. The problem is assumed to be the development
nf a syatem of simple input procedures for housing data
which &llow the resulting house to ke wiewed in perspective
with hidden lines removed. This is to provide low income
families the ability to design thelr own dusllings without
the extrems cost of employing an architect. R more detailed

description of the rational behind and advantazes of such

19

a system is put forth in a proposal (in part by this author)
to HUD [23].

In keeping with the requirement that design trials
utilize a minimum of computing resources, seversl input
and output paths are provided. Floor plans can be punched
on dats cards and submitted through card readers, coded
and typed into a memory type CRT scope (ARDS) connected
to the timesharing system, or drawn on a refresh type CRT
screen (IMLAC). In all cases, the data i1s made avallahle

1
1

(in common format) to a FORTRAM prozram which uses the three
dimensional aspects of the device Iindependent plotting
Tanguage to produce & plot file. This file can bhes plotted
o either of two Calcomp plotters, the ARDS screesn, a Gould
electrostatic plotter, or the IMLAC screen, showing three
dimensional, perspective, hidden line removed wiews of the

house from any observer location.

-Input from the IMLAC screen provides an interasctive
means (where necessary) of editfing the floor plans by
creating rooms, sliding them around to form the flocor plan,
and automatically erasing or modi fying previously
gstablished rooms according to a warlable hierarchical
structure, The finished ftrials can then be submitted to
the 6500, through the 3600 baud timesharing interface, for
analysis and three dimensicnal plotting on the IMLAC screen.
Maturally, other design 1trials may he constructed ke
editting the previous trial based on the thres dimensional

views and analysis data.

The houzing design system demonstrates the use of 1ow
st graphic terminals, the high speed timesharing interface
to the large scale computer, multiple access to the dessign
progran through COmmor dats format, and the device

independent plotting language. It also demonstrates the

[
s

type of system which can be developed by engineering

designers with the computing background propossed herein.

H DATH COMCEMTRATOR TIMESHRRING SYSTEM

Graphic terminals and mini-computers controlling analog
devices must communicate with timesharing systems at rates
substantially higher than for coreentional alphanumeric
terminal s. Typical engineering graphs and component
pictures requira from 5,000 to 20,000 bits of information;
sampling rates from analog devices generally range {rom
several hundred to 1,000 samples (800 to 10,000 bits) per
second. These figurss 1mply communication speeds of at
least 5,000 or 10,000 bits per second. Unfortunately, most
timesharing systems support only 100 to 300 [1], or perhaps
1,200 +to 2,400 [8]1[€], bits g

problems and the substantial draln placed on the computing

r second due fo communication

i

operations [5] receiving, corwverting, and storing individual
.characters.

Many timesharing systems reduce the drain on the large
computer by adding a smaller data concentrator comput et
(for example a Datasnet 30 on General Electric systems) to
perform some of the character operations before passing
data along to the larger machine. Such systems generally
[9] pass lines back and forth requiving response from the
large computer for each line entered or sent to the
terminal. This clearly reduces the overhead by a factor
rouzhly egual to the average number of characters per line
but still proves inadequate for systems operating above
ten terminals in the 5,000 to 10,000 bits per second Fange.
(Ten 10,000 bit per second terminals operating in line at

a time mode require the same nrumber of large computer

processes as forty conventional tarminals operating 1in
character at a time mode.)

A hardwares/softwar
thirty, 10,000 bit onnected

to a CDC 6500 timesharing system is discusszed below. The
1

"
I
I+
[y
=
e)
Q
[y
w
[y
ad
=
iy
v
~
(]
a
g
-

= at leas
e second terminals to bhe o

-

key to its supsriority over the ime at & time data
concentrator approach is that information is buffered into
disk sector size units for transfer ta!from the 6500. In
thils way, =ach terminal lTools to the BE00 like a dizsk unit
reguiring attention - once ewvery several ssconds for most
operations. Many functions are performed by this data
concentrator 1o simulate disk commurication including
character conversion, individual 1in prompting, specia
character processing (such as rubouts and carriage returns)
backspacing, error detsction, and multiplexing for mul tipd
terminals connected to one lins., Each of these operations
(requiring no more than initislization from t

discussed in detall in the remaining sections of this

chapter.

N
(]

MACHIME CHARACTERISTICS

The requirements of procassing thirty 10,000 bit per
second terminals, including character conversion, prompting,
and buffering to simulate disk transfers, demand
specialized mini-computer. A MODCOMP IITI [10] genera
purpose mini-computer was selected becaw of its speec

58
cand flexible input/output channel configuration.

The MORCOMP III is a sixteen bit, 800 nanosecond cycle

time, fifteen register machine. It has single and doubl

0 @

word instructions with eight bit opcodes permitting 26

instructions although only about 130 are lmplemented. Thes

il

include el aborate bit manipulation instructions, byt

o

3

addressing, and one to eight word stores and fetches, 1
addition to & full Boolean, shiit, and arithmetic operation
set. Hn example of the power of these instructions is that

character conversion regquires leszs than ten microssconds

per byte.

Buffer manipulation and error detection are made simple
and fast by a macro instruction which transfers 200,000
bytes or words per second while computing = cumpl

polynomial checksum or exclusive-or checksum and checkl

U‘J

for as many as eight special characters or seguences as
it transfers, This allows the software system to process
backspaces, meeat binary syrchrornous communication

specifications, and initiate retransmiszion of erroneous
data blocks with 1ittle overhead.

Probably the most significant feature of ths MODCOMP
11T is the input/output channels which were designed in
conjunction with the software system development described
below. Theses permit up to 5ixt§~f0ur full duplex terminals

ta access memory simul taneously stealing only 3.6

microseconds per word transferred. If all sixty-four
channels were rﬁnning at full speed, the memory ftime
required would only be twenty percent of capacity. Using
these charnels, the CFU need only initiate the transfer
of a full line and wait for an interrupt indicating
completion. It 1is comp]étely free to supervise other
channels in the meantime. In addition, special character

detezction hardware is included with the input channels which

=5

& s an interrupt when any, or any seguence, of three
sglectable characters is detected. This permit5 immediate
recognition of end of line, rubout, or attention characters
(for examplel without continuous scanning of the input
buf fers. It a&lso permits multiple character end segquences
(DLE-ETX in binary synchronous communication {for example)

to be recognized.

Finally, sixtesn interrupt levels are aval
with ssparate entry and return address cella. The:

=
a 120 cycle clock, power fail trap, executive monitor lewvesl,

il

and two party line level for commutication service and
data Iinterrupts. The seperation of interrupt addresszes
eliminates the overtead of searching for the proper service
routine address. Transfer type interrupts, 1ike special
character detection and end of dats, occur on the data
interrupt lTevel, while error conditions and termination
are signaled on the service interrupt lsvel, further

reducing the overhead in zearching for processor addresses.

the MODCOMP I1I

More complete characteristics of
t o the specific software

hardware follow as they pser

t
system features iIn the following sections.

s
[}

BUFFER ALLOCARTIOMN AMD MANRAGEMENMT

Many sophisticated buffer management schemes [11] were
considered in an effort to minimize the core space requlired
per terminal. Unfortunately, most required suhstantial
overhead for each bhuffer acquired and returned to free
storage. Experimental sections of Modcomp code indicated
betweesn 13 and 400 microszeconds per buffer fetched and
about half those times per return were required for dynamic
allocation schemss. Considering both times for transfer
to the 6500 and tferminal f{for average line sizes (forty
characters), the buffering overhead per character would
be more than twelwe microseconds. This 1is greater than
the time required for character conversion and not

acceptable.

Another objection +to the more sophisticated buffer

management schemes results from the speed of transmission.
Rt 10,000 bits per second, characters are transferred each
1000 microssconds. If morse than two o threse of ths

terminals reqguired additional buffer =zpasce simultanecusly
data would be lost. Finally, since the Modcomp is desigred
to communicate largely with remote mini-computers, the
buffer sizes are predictable. For these reasons, the core
data area is divided into warious numbers of fixed size
buffers of thirty-two, sixty-four, 128, 192, 258, 320, and

384 words.

ated 'mith

Each buffer is as: i a
reservation table. Az a routine needs a buffer, it sets

single bit in &

the appropriate size in a register and issues & reguest

to the allocation routine, This routine 1is non-

interruptakle to guarantee response (less than eighty
microseconds) and resolve interlock problems. It returns
the initial address of the buffer in the input register,

zaroing the appropriate reservation bit.

Buffer return is initiated by setting the initial
buffer address in an input register and issuing -a reguest
to the ron-interruptable return routine. This routine
simply stores the address of the buffer

& AS Lz =

3
2

i
‘returns requiring only eightsen microseconds. The executiv

fa]

‘monitor loop (described under Mon-interrupt Time Processing)
actually returns the bkuffer by resstting its raeservation
bit., This zcheme allows a processor to return a buffer
and then process it eliminating the need to save 1ts initial
address and simplifving ths reset and. recovery typeE
operations. The buffer cannot be reused until the processor
returns to the executive monitor

Since the number of buffers of =ach size 1is wariable,
it can be adjusted for system loading during non-time-
critical processing, This al

lows for maximum buffer aresa
ch/

"return owserhead,

27

MNOM- INTERRUPT TIME PROCESSING

Yirtually all information processing is done by a sst
of essentially independent routines which operate at the
zero interrupt level and can therefore be intervupted at

any time. These routines ars initiated by and communicate

with the interrupt code through sixtesn word terminzal and
site control blocks (TCE's and SCB's). | In addition, thesse
control blocks contain the parame+ rs which drive the

processing routines so that many different terminal and
lirne configurations can he handled by the same general
processor.

There is a terminal control bhlock for each physical

device connected to the Modcaomp which provides the interface

betwesn interrupt level rvoutines communicating with the
CDC 6500 and data manipulation processors. [details of
the types of communication possible are described below

in the section titled Communication with the COC E500.]

The information held in thess control bhlocks is as {ollows:

oThe current 6500 function being processed along with
its associated data count and status.

@The prompt message or lime rnumber and increment and
other associated prompting information.

eThe IM polinter indicating the next free location in
the circular buffer chain and the numbsr of words
Femaining to be filled 1in that buffer of the chain.
eThe OUT pointer indicating the next free Jocation in
the circular buffisr chaln and the number of words empty
in that buffer of the chain. '

8The special character (end of line, rubout, and

attention, for example) wvalues along with their
espective enable bits,

N
o

oThe terminal type and terminal dependent cantrol
parameters such as conversion table rucher and
buffering formats.

slnternal control counters for buffer allocation, E500
request thresholding, arich system utilization
statistics.

eThe initial address of the site cortrol hlock
corresponding to the 1line +to which the terminal is

physicaliy connected.
d

lress word.

&

oHn executive processor reguest

In addition to these terminal control blocks, there
are two site cortrol blocks for =ach full duplex
communication Tine (one block for input and the other for
output). These perform the interface between the buffer
formatting, multiplexing, and error processing routines
and the channel interrupt level routines. [Details of the

types of formats possible are described below in the section
titled Communication ith Terminals.] The informat 1o

irn these control klocks is as follows:

eThe communication channel number, controller number,
and terminal type indicating the general bufifer format.
eChannel configuration information inc!uding speed (110
to 50,000 bits per ssgcond), number of stop bits (on=
or twa), frame size (fiwve through eight bits), parity
type f(even, odd, or none), and whether or not to echo
incoming characters.

oThe initial addresz of the next buffer to be
transferred (i.=. all opsrations are doubls buffered
to improve responss at the terminal).

elnternal control counters including & timer for
transmission line timesout, number of Tine errors, and
number of buffer transfers.

Y
(4]

eThe initial address of the first terminal control block
assoclated with the linse.

®An executive processor executive request address word.

Hs noted above, bhoth the terminal and site control

blocks contain executive processor request address words.

The bkasic monitor loop which the CFU executes when
interrupts are not active examines this control word in
gach block. If any 1is non-zero, it hranchss to the
processor address specified after loading the control

block's initial address into register one, the complementary
control block's (2CB for & TCB, for example) initial address
into register six, and the terminal statuz block address
into register seven. The processor then executess based
on the information in thess contral blocks, generally
updates these blocks, and {finally returns to the sxecutive
loop when the operation is complete. The executive loop
o

then continues scamning the hklocks for another reguest,

The purpoze of the entire Modcomp system is, of course,
to allow terminals to communicate with the B500 in the most
efficient manner. In order for the E500 to know which
terminals require attention, @ thirty-siw bits of status
information (the terminal status block) for each terminal
are sent to the 6500 each tenth of a second. [This process

is describesd kelow in the section titled Communication with

the CDC £500.]1 Since wupdating this status in the Modcomp
determines the response time for the terminal, the
RIrOCESSOrS are designed to take no more ~than 3,000

microseconds kefore returning to the executive monitor loop.
In this way, e=ach of the thirty terminals is gusrantesd
a chance to update its status before each time that status

is transferred to the 6500.

-
L}

There are three types of processing routines which
can be activated through the control blocks:

1: routines which perform charscter conversion and
reformatting for the terminal control block circular
buffers.

2: voutines which perform buffer formatting, checksum
calculation, and initiate input/output for the terminal
communication channels.

2: support yvoutines which fetch, chain, and return
butfers.

The basic unit of data sxchange betwesn the terminal
control block processor voutines (1) and the site control
block processors (2] is the line buffer. This buffer
contains thirty-two, sixtvy-four; o 128 words (as specified
independently by terminall. Its first two words ars
reserved as a headsr containing information sbout the data

Wwithin as follows;

BIT 00 : end of record bhuffer status

01 : end of file buffer status
N2 : end of information buffsr status
03 : bkinary data in buffer
o4 - av : the terminal number for multiplexing
03 - 15 : the data charactsr count
16 - 31 ¢ the buffer checlksum

The remainder of the hkuffer contains the data, two

¥

characters per word, which is generally a single ling image,
atthough multiple lines per buffer are optionally permitted.

There are two data formatting routines which perform
conversion and reformatting: CVTIR for input and CVTOR for

output. The input processor routine is activated when a

w
—_

site contro] block processor has vread and wverified a line
buffer and placed that input routine’'s address in the
terminal control block's executive reguest address word.
The executive loop, upon sesing the non-zero reqgquest word,
loads the control block addresszes in registers one, six,
and seven, and branche to the processor. It, in turn,
loads the initial address of the input l1ine buffer from
a cell in the site control block, extracts the character
count from its header, and moves the data into the TCB

circular buffer chain.

Rctually, there are three options for the move data
cperation. If the buffer contains binary data, =5 indicated
by & bit in the header, information is simply copled by
a routine called MOVEC., If the hkuffer contains character
data, it is corverted to display code according to the table
specified in the TCB by the routins RDICVYT, If, finmally,
the data 1is compressed display code from a synchronous
remote batch station, it is expanded into the circular
butfer chain hy the routlne EXPND. For both types of
character processing, a&ll CDC ES00 1ine termination
conventions are met, and the end status is copied from the
header. Note that this makes CVTIA 6500 dependent and that

&
if wmore than one large scale machine were connectad to the

Modcomp, additional input conversion routines would be
requlred. bhen the copy/cornversion is complete, CVTIA
zeroes its TCB request word, returns the input buffer o
free storage, clears that buffer’'s address from the site

cantrol hlock, and returns to the executive monitor loop.

Output processing, handled by the routine CUTOQ, is
initiated by the interrupt routine which communicates with
the CDC E500. This interrupt routine stores data in the
TCB circular buffer chain, updates the IN pointer in that
TCB, and stores the CVYTOR processor address in the exec +1uu

Fegquest address word of the TCB. The executive loop, -upon

seeing this rnon-zerc regquest word, loads the appropriate
control hlock addresses into vegisters ons, six, and ssven,
and branches to CVTOH. This output processor fir&t checlos

the assocliated SCB's input address word to insure’ there
is not already a line buffer walting to be transmitted.
It then fetches a line buffer . from the hufier pool, assuming
there was no buffer waiting., MNext, it moves data from the
TCB circular chain into this line buffer stopping t the
buffer timit or the end of & logical text line

im the TCB. Finally, it sets the header Informs
the line buffer, stores this buffer's address in

stores an output processor's address In the SCB, cle
its own TCE request word, and retuwns to the executive |
having updated the TCB OUT polinter.

As with the input processor, there are thres mouwe data

-.-.

options. If the buffer contalns binary data, it is simply
copled from the TCE circular huffer chailn to the line buffer
by routine MOVEC. If the buffer contsins character data,
it is corverted f{rom display code according to the
conversion table in the TCB by DIACYT., If, finally, the
data is dest

}-h
|,'[|
o

for a synchronous ramote batch statlon,
it is compressed for communication efficiency by the routine
CMPRS. DNote these

E500 1ine termina

prmcesaors are alzo depsndent on the

.-+

on specifications,

The second type of non-interrupt time routines are
those which are activated through the =site control hlocks
to format buffers and psrform checksum calculations for
communication with actual terminal devices., The four typses
of terminal devices are handled by ssperate processors for
input and output making & total of sight processors. They
are selected by the TCEB processor or interrupt code, based
on terminal type, as =ither stores the processor’s iritial
address in the SCB exscutive raquest address word.

The specific functions performed by these eight

~ processors are detailed below in the section titled

Communication with Terminals but the rogutine names and a

brief description are listed as follows:

|43}

s |

tiates output for asynchronous terminals
and processes resulting ackrnowladge or negative
ackrnowl edge responses from the device for continued
or retry transmission, re;pective!v.
SOTEYN initiates output for synchronows terminals
handling multiplexing, checksum calcoculation, and
retransmission of invalid buffers.
SOTLF initistes output for line printers handling

checksum calculation, carriage control functions,

and retransmission of invalid buffers.

SOTHMTY iniltiates output for multiplexed asynchronous
terminals handling checksum calculation, header
formatting, transmizsion arid retransmission of
bufiers.

SIMNAZY irnitiates input from asynchronous terminals,
walidating the checksum, arnid regquesting

c

retransmission or passing the data along to the TCBE
processor,

SIMNSYM initiates input from swvnchronous terminals,
handling multiplexing, buffer wvalidation, and
requests for retransmission.

SIMCR initiates input {for card readers, wvalidating
the communication checksum as well az bkinary cards,
and reguesting retranamission or processing by the

tir
TCE corwersiaon routine,

SINMTY initiates input from multiplexed asynchronous
terminals handlirng header processing, checlsum

calculation, tranamlssion and retransmission of

buffers.

One of the more significant features in terms of
reducing the 6500 overhead provided by the Modcomp system
is read with prompt. [This feature is described in detail
in the section Communication with the CDC 6500.1 It allows
the 6500 to issue a single read function which koth enables
input and issues a prompt messzage to the termimal. This
massage can be a ten character ovr less word for single line
reads ar & series of incremented line pumbers for buffered
reads, This feature first guarantess that input is enab)ed
before the prompt is sent, and second, permits the B500
to issue & single function instead of a2 write followed by
a read. The prompt formatting and line number incrementing
are handled by a routine called FROMPT which is assoclated
with the site control blocks ’

}

Rliso associated with the SCB's 1is the routine SFPCPR
which processes all speclal characters (i.e. rubout, end

of line, attant] «..) detected by the special character

ic
detect hardware discuased above. This permits & common
routine f(rather than several interrupt processors
process these characters, as well as moving this processing

out of the non-interruptables code.

I+ is nho doubt clear that bt

l_h

fe
utilization, and return play & substantial
Modcomp system operation. Since line huffers (as associat
with the SCRB's) are treated as separate units, they
fetched and returned independently =5 discussed above in

the section titled Buffer RAllocation and Management. TCB

associated data (as it comes from / goss to the CDC BS00)
is in circular buffe chains. This meanzs that as the
channzl completes one buffer, it must automatically beglin

filling the next in the chain to mest the 6500 channel speed
requirements. The Modcomp hardware does this automatically

if the last two words in the first buffer are presst linking

43}
[d3]

it to the szecond with an initial address and. count. The
routines which perform this linkage as buffers are fetchsd
for the circular buffer chains are SCHAIN to start the chain
and CHRIM to continue it. |

Hs & final aspect of non-interrupt time processing,
a set of counters are maintained in the TCB s to keep track
of the number of buffers in the circular chains. B maximumn
is set (and dynamically varied as the load changes) zo that
buffer space 1is allocated appropriately among terminals;
depending on speesd and priority of the warious devices.
In addition, a thresholding counter 1z maintained which
indicates when TCB processors should reguest communication
with the B500, In this way, response is maintained for
the terminals while B8500 owverhead is reduced by maximizing

’

the data transfer per communication.

INTERRUPT TIME PROCESSING

of the thirty-two interrupt lTevels potentialtly
available on the Modcomp III, only six are iImplemented as

c8FPower fall and auto restart which allows the program

to sawve the state of the machine and reglsters during

& power failure and restore them when the power comes

back on.
sllnimplemented instruction trap which is used for system
mornitor functions whilch must not themselwes he

interrupted.

8120 cycle clock

eData trap party line indicating an input/output channel
has transferred to an end of buffer or a special input
character has been detected.

eService trap party tine indicating an input/output
channel has destected an error or switched from busy
to not busy.

sConsole switch which allows the operator to ilnterrupt
the processing asynchronously with the rest of ths
awstem.

_ Thezs intervupt levels are in order of priority which
is particularly significant since one |

evel can interrupt

by any of higher level. For that reason, sach has its own

m

i
entry and return addres dedicated memory cells, and the

party line lewvels have sixty-four entry addresses esach,

u‘l

This permits each controllier to have its own sevrvice routine

address without costly overhead nscessary to compute servic

(]

+
addresses bhased on controller number

The unimplemsnted instruction trap level i3 used to

detect illegal instructions before they are executed since

37

this execution forces the CPU into an unpredictable state.
In addition, one of these 1illegal instructions has been
defined as an executive function instruction. When the
CPU attempts to execute this instruction, +the hardware
thinks 1t is unimplememted and traps to the interrupt

ervice routine, storing the address af the "bad"
instruction in its dedicated return cell. The service
routine can then read this instruction with an indirect
reference through the return cell and extract its low order
eight bits as an index to a table of executive functions.
The advantage 13 that such executive functions are thereby
executed at the unimplemented Iinstruction lewvel and can
therefore not be intervrupted b; any other process, avolding

interloclk problems and guarantesing response tin

ﬁ

Three of these executive functions are uszed for buffer
al]Draf&nn, return to gueus, and retun to free storage
as discussed in the section titled Buffer Allocation and
Management. The remainder are used for communication with

the channels.

he
communication lines 1s handled by & single executive

A1l Modcomp input/output initialization on

~+

function, EIOM. This routine expects input reglsters to
contain the site control block address of the 1ine for which
the initialization is intended, the bhanﬂei contraol word
for that initialization, and the transfer address and count.
The EIOM {functicon determines frDm the SCEB the channel and
controller rumbers and formats the reguest for that device
making the processors itiating I/0 device independent.
In addition, functions are avallable for I/0 termination,
setting characters for input special character detection,
and reading the current transfer address while I/0 is in

progress.

[£3)
K=

The 120 cycle clock is wused to provide timeout
information fovr the site control blocks theresby avoiding
standoff{ conditions betwzen ths Modcomp and remote
processors. The routine CLIEP increments a two word courter
each one hundred and twentisth of & sscond. In addition,
it clears interval bits for sach SCB that weres set during
the last interval (an interval is currently one second or
120 interrupts). In this way, an SCB can set its interwval
bit, return to the exscutive loop, and then check this bit
each time it is recalled by the executive loop.

Rl communicaticon with the 6500 is handled by a
saequence of three or four events triggered by data and
service interrupts. When the 6500 is vrveady to issue a

function, it sets 3 bit in the flag register of the device
!

coupler connecting the 6500 to the Modcomp., This g
a service interrupt activating event zero which issuss &
read for fifteen bytes (the furnction kleock. Ths
titled Communication with the CDC BE00 below dicusses
process more conpletely.) The datas interrupt signalling
the completion of that read +triggers event one (the CPU
is available {for non-interrupt time processing during the
transfer) in which the function is decoded, copied to the
terminal control block for processing, and a fiftesn byte
response block written to the B500. Thres prﬁcea SOFS
perform this decoding: READF for 6500 tead functions, WRITF

for write functiorns, and DPMNDTAF for rnon-data functions.

J

The data interrupt signalling the end of the responsze block
transfer activates either evernt two or thres depending -on
whether thevre is a data transfer required for this function.
Event three handles terminstion of interrupt processing,
ritiates the TCBE request for further function processi

nd enabl

m
'.'1!
o
[}

for a service interrupt for the next funct

During this three or four svent sequence, the TCB is
modified to reflect the current function, move the IN or
OUT pointers, etc. To prohibit premature processing nof
this new function or condition, an interlock bit is set
at the beginning of event zevro and cleared at the end of
event three. The executive loop will not activate a

processor whose interlock bit is on.

The final group of interrupt routines process requests

from the communication charnels. S

a3
[y
O
-+
ny
E":_l
)

i -2 are many [the
desighn is for thirty) high speed devices connected to these
€

channels, rapld processing is nec y. This demands that

@
s
.+ Q
r+
c

interrupt code simply =set * s bits or transfer
information in the site control blocks and return allowing

non-interrupt time code to do the processing.

E

ach 5SCB caomtalns three such ztatus bits arnd a
character information byte. The first two status b

(‘J

&
i v
for channel acknowledgements and negative arknnw1edgement5
to data transfers as set by the interrupt code. The thir
is for time out indication set if transfer is expected
but not received, in & certain time iInterval. Finally,
if the special character detect logic is triggered on input,

the character responsible is set in that byte of the ZCB

for processing by SPCPR (described above). The result of
this approach is that interrupt code is rarely executed
for longer tharn 100 microseconds at a time eliminating the

danger of data overruns.

40

COMMUMICATION WITH THE CDC 6500

The basic philosophy of the PROCSY 2.0 System insists
that +thke 6000 1initiate all operations and that as much
information as possible about the operation be propragated
to the computer which 1is actually driving the terminal
i

o]
i}

vice. The 6000 initiates all operations by =sending a

|_||

f gen byte (twslwve bits per byte) function block to the
first lewel bhuffer machine. That huffer machine immediately
responds with a fifteen byte response block indicating

whethsr the function can bhe pro

L'[I
|‘ it

EE‘-d immediately, 1is

propragated to the next level computer or device, is pended

walting for an in-progress function to complets, o iz in
2rror. If +the process immediate respornss is issued for
data operations, the data is transierred immediately. If

the {function does not require data transier or the process
immediate response is not lssued, the operation is complets.
Otherwise the operation 1is complete when the data is

transferred.

The type of response returned to the 6000 is indicated
in the response byte (BYTE 1) as follows:

BIT 00 : process function inmediately
01 : propragate function to next lawvel computer

or device

N
»

another function pwndlw

L T e
LA

: 2riror in function

Although the 8000 initiates all functions, the huffer
machine must indicate the status of sach terminal so that
the BOO0 knows when such functions are appropriate. To
accomplish this, once each 100 milliseconds the 6000

reguests 'a bullk status transfer of three twelve bit bytes

41

B ‘ of information for each terminal. The first byte of sach
sica

- triplet centains the physical device status with individual
bits defined as follows:
BIT 00 - 03 - unused
10 1 write enable
11 + device not ready and under no circumstances
will accept a function

The second and third bytes contain the logical status
as set by the level ftwo computer and buffer machine
respectively. The individual bitz are defined as {ollows:

BIT 00 : zattention signal

01 : buffer ready

U2 : errvor

02 : input in progress

04 : output in progress

0% @ non-data operation in progress

06 @ function pending

07 : terminal logged-an

08 : reset operation in progress

09 : terminal reserved by buffer machine

10 wnused

11 :+ PP attention bit used by the bufisr machine

' ta reguest the PP issus a function 570. The
buffer machine can then indicate additional
status informatiorn and requesis by sestting
appropriate bits in the response block, BYTES
12-15.

Setting bits 0, 1, 2, or 11, causes the 000 CM program
to be swapped into memory. Bits 3 through 3 are dynamic
status information used hy the 6000 program and the huffer
machine.

42

In order to improve the efficiency of the data transfer
betwsen the 6000 and the buffer machine, a thresholding
scheme 1is activated whensver there is snough core in the
huffer machine to allocate multiple sector size (320 hytes)
buffsrs to each terminal. In this way, the buffer machine
does not set the buffer ready flag bit until several buffers
are full (read functions) or available (write functions).
Once the &000 detects the buffer ready condition, 1t can
then read lwrite) all the available buffers with a single
program swap. HAs those buffers are transferred, however,
the threshold 1s crossed causing the buffer ready f1ag bit
to be turned off. This would normally cause the B0O00 to
stop transferring data, defeating the intent of
thresholding, To solwve this problem, a single buffegr ready
bit 1is defined in BYTE 3 of the responze hlock. It is set

b

@

by the buffer machine whenever th iz another buffer

available.
The fcllowing is & 1ist of all functions processed
by the buffer machine and their respective [function block

formats:

Function 000: Read Phvsical Record

The bytes in the function block are as follows:

BYTE 00 : 0000 - the CIO function code
81 : 0002 - the function +type (a read function)
02 : the number of the physical terminal from which
the information is to be read
02 : the mode flsg byte from the 65000 FST
04 : unused
0%

D : the lina nuriber terminator character in .

ccontrol information for the prompt

display code

43

07 : the line number increment
08 - 02 - the tuwenty thres bit l1ine number
10 - 14 - the ten character or less prompt message

if line numbering disabled

_ This function initiates the read of a single physical
record of 320 bytes or less terminated by an end of record
condition or end of lire character. If the line increment
(BYTE T) is non-zero, the line rumber specified is sent
to the terminal as input is enabled. This line number
prompt is generally nine characters including the terminator
character specified in BYTE 6. 8 decimal point is inserted
so that the number of characters 1o its right are as
specified in bits zero through two of BYTE 5. Blanks are
added to the left of th2 numeric characters to i1l the
prompt out to nine characters. Bits three through five
of BYTE 5§ specify the number of these leading blanks to

be deleted, shortening the line number prompt.

If the 1ine increment is zero, the left justified ten
character (o less terminated by zero characters) prompt
is converted from display code. H summary of the individual
bits in BYTE 5 is az follows:

BIT 11 : use prompt as re-prompt only
10 : output prompt desired
03 : cover up input line if possible

08 : do not insert CR/LF before prompt

g - 07 - unused
03 - 05 - leading blank delete count
00 - 02 - decimal point tocation

I{f an end condition is received from the terminal it
is copied to the response bloclk (BYTE 2) as follows:

ty

BIT 11

180 @ end of file

end of record

03 : end of information
08 : end of tape
07 parity error
01 : =ingle buffer ready

These end conditions are set in the 6000 FET so that

CM programs can check them using conventional test routines.

Function 010: Buiffered Resad

The bytes 1in the function block are as specified for
Function 000 except that BYTE 0 contains the buffered read
function code (0010).

This function initiates & continuouwz read from the
specifisd terminal until an end condition or breakpoint
character 1s received. The data is buffered into sector
size (320 bytes) blocks kefore it i3 transferred to the
6000, This bufifering

reatly reduces the number of times

UO

the 6000 program which issued the read must be swappsd into

memory thereby improving esponse at the terminal and
overall system performance.
The prompting is as specified for Function 000 except

that the line numbers ave aUtHWﬂTle]]y incremented by the
value specified in BYTE 7 after sach line is entered,

Function 00Y: Write Physical Record
The bytes in the function block are as follows:

BYTE 00 : 0004 - the CIO function cods

45

o]
—
Il-

0001 - the function type (a3 write function)

02 1 the numbsr of the physical terminal to which
the information i1s to ke written

: the mode flag byte from the E000 FST

04 : the numbesr of bytes in this transfer

2
P

05 : contral information for ths prompt
DE : the 1

display code

ine number terminator character in

07 : the lins number increment
08 - 09 - the twenty thres bit line rumber
10 - 1% - the ZXen character or less prompt message

if line numbering disabled

This function initiates the write of a single physical
record (320 bytes or less) to the terminal specified. If
the line increment hbyte 1is hon—zero, incremented line
numbers are ssnt to the terminal preceding each line., If
the increment byte is zero snd bit ten of BYTE § is one,
the ten character or less message 1z sent to the terminal

preceding each line.

If the information transferred is less than 320 bytes,
an end condition must be specified in ths mode flag byte

(BYTE 3) as follows:

]

BIT 11 : end of record
10 @ end of file
03 : end of information
023 : end of tape
07 : parity error
a1

single buffer ready

These end conditions are copied to the device or next
level computer.

H&

Function 014: Buffered Write

s the samsz as described for Function
004 except that = full sector (320 bytes) must be
transferred. For this reason, if there is not a full sector
{64 CM wards) in the B000 buffer, the write
with no data transferred. CIO Furnctians

~This function 1

= completed
4 and 034
ally filled

o
[AS)

(described helow) may be used to clsar part

buffers.

Function 024: Write End of Record

|_I'|
[ai]

Thiz function write: physical record of 320 bytes

or less to the terminal specified with the end of record
condition set. I+ is eguivalent to Functi D04 except
that the= end of record condition is always s=t.

Function 034: Urite End of File

This functions writes a physi

LLI

ical record of 320 bytes
or. tess to the terminal spescified with the end of file
condition set. It is equivalent to Function 004 except

that the end of file condition is always =et.

For each of the above data fu
function code may be set indicating a binary operation,
In this case, data is transiered without corwversion although
the special aracters are processed on Input, Special
characters are described bhelow under Function 530, If hit
one is not set, characier conwversion is performed tof from
display code, The corversion mapping depends on the

i
terminal type set using Function 524 described be)ow.

37

Funetion 050: Rewind the Terminal File

The bytes irn the function block are as follows:

BYTE 00 : 0050 - ths CIO function code

01 : 0000 - the function type (a non-data function)
the number of the physical terminal to be
rewound

03 - 14 - unused

For terminal devices this {function is treated as a
reset function terminating in progress operations. Since
the terminal cantot actually be rawound, loss of data a3

a vresutt of this functiorn 1s possible.

Function 204: Urite End of Inforamtion

This function writes a physical vecord of 320 bytes

i
2
or less to the terminal specified with the e of

O
+

information condition s

Function 500: Request Terminal

The bytes in the function block are as follows:

BYTE 00 : 0500 - the CIO function code
01 : 0000 - the function type (a non-data function)
02 : the number of the physical terminal which
iz requested J

03 - 14 - urused

This function requests the terminal specified reseting
all variable parameters to their default wvalues. If +the
terminal has already besn ragquested, this function is

‘treated as & reset (described below), except that it may

be pendsd

immediately,

Function

48

unlike the resst function which is processed

o04:

Reset the Terminal

The

BYTE

bytes in the function block are as follows:

oo
01
0z

]
L£3]

This

immediately,

returned
terminsl
from the

received

0504 - the CIO function code
0000 - the function type (a non-data function)
]

the number of the physica terminal to be

reset
- 1% - unused
tunctiaon resets all in-progress functions

R11 buffers assigned 1o the terminal are

with possible loss of data. Hiter the reset, the

is completely deactivated pending another function

6000 except that the attention character may be

and processed.

Function 520: Eead Terminal Mode Flags

The bytes in the function block are as follows:

BYTE 00 : 0520 - the CIO function ceode
01 : D000 - the function type (& non-data function)
02 : the number of the physical terminal to ke

" reconfigured
03 - 04 - unused
05 - 03 - esnable mask bytes
10 @ owtput terminal control information
11 : input terminal control information
12 : unused

13 : terminal type flags

4g

14 : terminal mode flags

~ This function reads the current values of the terminal
mode flags. The meanings of the individual bits in BYTE
10 and BYTE 11 are as follows:

BIT 0-3 : the maximum nunber of characters (eight bits

or less) / 128 in a single line of ‘input or
autput. If if this limit is reached, an end
nf line is assumed, and the remalnder of the
lire (to the 6000 line terminator) is ignored.

4-5 1 the character size (5, 6, 7, or 8)-5

OB : enable echoing of input characters

07 : number of stop bits per character - 1

08 compute even parity 1f sst

09 checlk or generate a parity bit on each

character
10 : compute excluzive OR checlk of the entire data
bloclk 1f =et

"1 operate the terminal in block check mods

The meanings of the indiwvidual bhits in BYTE 13 are

as follows:

BIT >DU - 08 - an index flield whose meaning is defined

m

by bits six through nine 4

06 : the index fleld contains the terminal type
and therefore the number of the conversion
table to be used for coded translation

07 - 03 - unused

10 : wse an end of block sequense (DLE-ETX) instead
of a hlock character count for blocked data
transfers '

11

use the special PROCSY 1.0 conversion mapping
instead of the full ANSCII code

50

The terminal types currently supported are as fol Tows:

TYFE 00 : upper case ANSCII dewvice
01 : upper case ANSCII device with papsr tape
N2 ¢ CNECII device with full character set
03 : IBM 1050 terminal
04 : EBCDIC terminal
05 IBM 2741 terminal

6 - 31 ~unused

The meanings of the individual bits in BYTE 14 are
as follows: ' |

BIT 00 : send a single input enabled character to the
terminal lmmediately following all imput

enable operations

01 : disable prompting
02 multi-line or multi-job operation
03 : do not insert a carriage return/line fesd

before the first line of each output operation
0% : process attention characters
05 : process rubout characters
06 : process end of lins characters
07 : proness backspace characters
08 : process breakpoint characters
09 : ignore control characters
10 : check only the {irst character of each line

for the breakpoint character

11 : process escape characters to suspend output

The exact m=aning of the speclal characters whose
erable bits are indicated above is described under Function
530. The other enable bits are more fully described in

the section concerning communication with the terminal
devices. The default walues for a standard teletype

terminal, preset in the buffer machine, are az {ollows:
0241 0341 0000 4000. 7761

51

Function 524: Set Terminal Mode Flaes

This function sets the terminal mode flags in the
control blocks within the buffered machlnes. The function
block format is exactly the same as for Function 520. EBYTE
& through BYTE 3 are used as enable masks for BYTE 10
through BYTE 14 respectively. For each mask bit which is
set the corresponding mode bit 1is copied to the control
blocks. '

Pk}

Function 530: Read Character Information

m

The bytes in the function block are defined as follows:

BYTE 00 : 0530 - the CIO function code
01 : 00800 - the furction type (a non-data function)
02 : the numbker of the physical terminal to be

econtigured

02 - 083 - unused.

03 character mask (bits set ares proces=zed)
10 : attention character

11 : end of 1ine character

12 : rubout character

13 : bhackspace character

14 breakpoint character

The special characters apply to characters as they
arg veceived from the terminal (read operations). Their
values are specified in display code but are cornverted by
the buffer machinsz so that they can be compared to the
characters actually received from the terminal . A more

detailed description of these charactsrs 1is as follows:

BYTE 10 : the attention character =sests the attention

bit in the terminal status. The in-progress

11 =

12

The actio

52

operation amy b2 continued or cancelled by
the 6000 processor, but if it is cancelled
data may be lost.

the rubout character neels an input block,

causes lrnput ed, and re-issues

the prompt 1f enabled

the end of line characte indicates the end
of ah input block, If the in-progress
function is & physical record read, input
iz terminated and the line transferred to

the 6000, If the furction is a buffered read,

cthe lirme is stored for laier transmission
and input is re-snanled with an incremented
line numbesr or message prompt 1f enabled.

the backspace ch causes the last
=

i
non-backspace character to

the input block. Backszspace characters may

be combined deleting more than one character
but backspacing bevond the beginning of the
line is lgnored.

the breakpoint character indicates the end
of & buffered read ocperation and is squivalent
to an end of record. Unlikes the other special

characters, it i converted to dizplay code
(if conversion is requested) and copied to
the transmission buffer so that it is
availakle to the 6000 program. Onece the
breakpoint character is pk cessed, input is
dizabled pending Canother function from the
6000,

of each of these special characters may

be disabled using Function 52Y describesd above.

Function 534: Set Character Information

This function sets the special character values in
the buffer machine. Its function block format 13 as
described for Functiorn 530.

Function 560: Release Terminal

The bytes of the function block are defined as follows:

BYTE 00 : 0580 - the CIO furnction code
01 : 0000 - the function type (& non-data function)
02 : the number of the physical terminal to be
released

03 - 14 - unused

"This function vrsleases the terminal clearing all in-
progress functions. The terminal is completeiy deactivated
pending a request terminal function except that attention

characters may bhe received and processed.

Function 564: Toggle Suppress Bit

The bytes in the function block are defined as follows:

BYTE 00 : B5B% - the CIO function cods
‘01 : 0000 - the function type (a non-data furction)
02 : the number of the physical terminal to which
the suppress applies

03 - 14 - unused

Function 570: Intermachine Communication

The bytes in the function block arse defined as follows:

54

BYTE 00 : 0570 - the CIC function code
01 : 0000 - the function type (a non-data function)
02 : the numbsr of the physical terminal to which
the communication applies
02 - 11 - unused
12 : the communication subfunction

13 - 14 - subfunction data

Onty the following subfunctionz apply to asynchronous
terminals, Those not listed should be treated s= error

functions:

FCM D& : unconditionaliy reset andd velease the
terminal. A function accepted response (BYTE
1 = 0000) must be returned by the buffer
machine.

55

COMUMICATION WITH TERMIMALS

There are three types of communication hkbetween the
buffer machines and asynchronous terminals. In the first,
the buffer machine simply transfers characters betwesn the
6000 and the terminals with optionél character corwversion.
In the second, the buffer machine breaks the data transfers
up into blocks adding prompt and response logic so that
the terminal can control data transfer and perfarm error
checking and retranamission of bad blocks., Finally, the
buffer machine can communicate with remote mini-computers
acting as & multiplexor. This third mode pe#mita a remote
computer to provide indepsndent sccess to the 6000 for

several devices cornected to it.

Regardless of the communication type, there are several
variable parameters which affect the data trarsfer. Each
is described below along with its respective method of

specification:

1 : Baud Rate
The transmission speed in bits per second.
It is a hardware constant ranging from 110

to 6000 baud for sach terminal independently.

2 : Character Size
The number of bits per character excluding
the parity, start, and stop bits. It is
variable during system operation using CIO
function 524 and may be =set 1o five, six,

seven, or elght bits.

w

Parity Check
The parity +type for each character; either
even, odd, or none. If requested, an

[Aa]
s

56

kit 1is added
so that the total number of bits
addd The

part of the srror dection bits variabls

additional to each character,

set is ewven

or as specified. parity check is

during
systemn operation wuwsing CIO functicon 524.
Echo Input

Echo
The

hardware as

the fterminal.
by the

accepted into the

charact coming in fraom
ct

echaed interface

m

chiz are

=1
e
th ars bhuf fer
f i

I

xl

machine echoing is specified wsing CIO

he to

iy

function Car used

o

insure
characters ed by the buffer

machine,

Stop Bits

The number of stop bits (orne or two) following

the charactar. It may be specified during
system operation using CIO function 2u.
CR Pad Count

The numbsr of null characters (octal value
uon} sent to the terminal following each
carrlage return. I+ can he set tao =zero
through four to allow the carriage to veach
the left margin before any printable
characters are sent to the terminal.

PMon-Blocked Single Terminal Communlication

The simplest type of communication i1s specified by
setting the block check request bhit to zero using CIO
function 524. The buffer machine simply transfers
characters between the G000 and the terminal with optional

conversion into display code. The Jast section of this
report _ describes the corwersion mapping and display code
conventions.

During output Gberations characters are sent to the
terminal as they are received from the 6000 in one line
units. The output can be terminsted with the attention
character or suspended with thes eszcape character (ANMCSII
value 033) if they are enabled. R sscond escape character

can be used to continue suspended output.

During 1input operations characters ares accepted in
single line units. The maximuwn number of characters in
a line can be specified using CIO function 524%. Orice the
buffer machine accepts the first character of a block, 1t
continues until the block is full or the attention, rubout,
or end of line character is recelved with 1its respective
enable bit s=t, A delay of several -milliseconds bhetween
blocks always occurs and may vreach sewveral seconds under
heavy system load conditions. Terminals operating with
this type of communication should request prompting betwesn
blocks or echoing so that they are certain input is being
accepted.

If the attention character detect enable bit is set
{using CIOG function 524) and the attenmtion character is
received, the other characters in the block are ignored,
the 1input operation is suspended, and the attention bit
is set in the 6000 terminal status bloclk.

The 6000 CHM program, upon detecting the attention bit,
may either rveset the terminal immediately ovr read the data
which has been buffered ahead. In either casze, another
read function must be issued befcore more data is accepted
from the terminal.

58

If the rubout character detect enable bit is set (usi
CI0 function 524} and the vrubout character iz recsived,

the other characters in the block are ighored. The prompt

which was sent for that block is reissusd as input is re-

enabled.

If the end of/ line character detect enable bit is set
(usirg CIO function 524) and the end of lins character is
received, the block is copied into sector size buffers for
transfer to the E00D0. If the transfer mode is codesd,

characters are converted to display code as they ars copled.
Finally, if +the block 1imit is reached, the buffer

machine accepts the bBlock as 1f an end of line characetr

had been entered.

Blocked Single Terminal Coammunication

The second type of communication permits the terminal
substantiallw greater control over data transfers including
error checking and retransmission of inwalid klocks., It
is specified by requesting a block checlk using CIO function
524, This +type of communication first invelves single
character prompting for input or permission to send output
to the fterminal. Then a data block, of fiwed maximum length
specified using CIO function 524, is transferred with a
four character headser, thes data, a checlksum, and an end
sequence 1f the tranzfer 1is not count controlled. The
header includes the block data length f(optionall, the
transfer mode, end condition bits, and seguence hits, Its

first chararacter i1s divided into fields as faollows:

BIT 07 : unused

53

06 : binary transfer if one (character conversion
not performed)
00 - 05 - unused

The second header character 1s divided into {iel

o
w

as follows:

BIT a7

g6 : end of record

unused

0 : end of fite

04 : =nd of informatiaon

3 1 end of transmission
o0 - 02 - sequence nunber from zero to sewven.

b=
It i1is incremented each +time & buffer 1is

transferred and acknowledged.

Header characters threse and four are used for a count
of data characters actually in the buffer 1if the transfer
is count controlied. If it is not count controlled, a DLE-
ETX end sequence is appsnded to the block. It is more fully

&
descriked under multipls termins]l communication below.

If the Cyclic Redundancy Check (CRC) iz specified us
CI0 function 524, the checksum is & two charact (zix
bit) walue. Otherwise, the Longitudinal Redurdancy Check
(LRC)Y, which is an exclusive-or of all the data charact
in the block, 1is the checksum character. The CRC uses the

checking polynimial:
216 + K1Z v+ K2+ =7

This can easily bes implemented a3 part of the serial
interface hardware. It is, however, significantly more
complicated if computed with software, requiring at least
several hundred microseconds per character.

60

In order to understand the CRC accumulation, a brief
description of the serial interface specifications of the
buffer machine multiplexors 1is appropriate. They follow
the Electronics Industry RAsscciation’s (EIAY specifications

more fully documented in EIR document RS-232.

The terms LINE HIGH, 1 -BIT, and LINE ON, refer to the
serial transmission line having a minus six volt potential.
The terms LIME LZW, 0 BIT, and LIME OFF, refer 1o the line
having & potential of plus six wolts., The term BRUD refers
to the number of bits of information the multiplexor can
sznd or the number of times per second it checks the 1ine,

rnto

reading bits and assemblying them characters.

The 1ine is normally HIGH. Vhen the multiplexor is
ready to send & character, it pulls the line LOW for one
bit time repressnting a start bit. It then toggles the

line bstween plu5 and minus six volts corresponding to the
icent bit of the
character first. Riter the five, six, seven, or e=ight hits

information bits with thes least signifi
(az specified using CIO function 524) hawve been ssent, the
line is set to the walue aof the parity bit for one bit tims,
if parity checking is reguested. The parity bit iz set
so that the total rwumker of kb

el
I+

=

ever o odd

e
W

m
X

orresponding to even or odd parity respscitlvely. Finally
t

-
|

the line iz set HIGH for on=s or two bi

i

e

fas specified)
representing stop bits. Since this is | asyrnchronous
communication, the line could remain HIGH for any length
of time before the next start bit., In the PROCTY 2.0 system
howeswer, the intercharacter time newer exceesds five
character times. TIf this maximum time 1s exceeded, the
receiving computer should treat it as if a checlksum error
has occured and ask that the block be retransmitted.

61

Implementation of the CRC requires a sixteen bit
register be added to the terminal interface hardware. Each
information bit, as it is shifted onto the line, (or
received) must also be shifted into CRC register bit 0 after
being exclusive-ored with the output of the CRC REGISTER.
This input signal must alsc bes exclusive-ored with bits
1, 2, and 15 of the CRC register. This causes the CRC +to
continuously be accumul ated as the characters are
transferred. For dutput operations, 1t can be shifted out
as two elight bit characters immediately following the last
data character (with bit 15 first). For 4input operations,
the CRC register becomes zero if &ll the data and the CRC
characters are shifted through it and the information

checks.

When the 6000 issuwes a CIO write function, the huffer
machine begins sending a single start text character (STX
of octal walue 002) at approximately one second interval s,
This indicates to the terminal that the buffer machine wants
permission 1o transmit from one to & bufier full of
characters to the terminal. The buffer size can he set
using CIO function 524.

Whett the terminal 1is ready to accépt the data, which
cannot ke interrupted once started 1n this type of
communication, it acknowledges by transmitting a single
character (ACK of actal wvalue 008). The buffer machine
then sends the data precesded by a four character header,
which includes +the checksum a3 described ahove, and
terminated by the end s=squence 1If the transfer is not count
controlled. If the ACK is lost or =1

the buffer machine continues sending the STX characters

f[l

ived as an error,

at one second intervals. For this reason, the terminal
must time out and issue an ACK s=2guence if more than five
¥

character times elaps after a character is received.

&2

If the data is properly received and chescks against
the _block check characters, the terminal transmits an ACK.
If a time out condition occurs or the data does not checl,
the terninal transmits a negative acknowledge (WAK of octal
value 025) to the buffer machine. The MAK causes the
procedure - to recycle {or retransmission of the bad data
block. MNote that the ACK and NAK characters not only
ackrnowledge the completion of a data transfer but also
irmitiate transmission of the rnext block. If the response
character 1is lost, in srrovr, or delayed' mors than one
sgcond, the STX character 1s again sent at one second
intervals. The terminal must respond to this STX when 1t
is ready for the next transmission with the ACK or NAK as
appropriate. Riter the fterminal transmits an ACK to the
last data block, the end of message character (EM of actal
walue 031) is sent to the terminal.

Whet the 6000 issuss a CIO read function, the buffer
machinze begins sending a single enguiry character (END of
octal wvalue 005) to the terminal at approximately one sscond
intervala. This indicates to the terminal that the buffer
machineg will sccept up to one full block of data.

When the data is availabhle, the terminal transmits
it precesded by & four character header (described above)
and followed by the end sequence if the transfer is not
count controlled. If the data is propefly recelved and
checks gainst the block check character(s), the buffer
machine r"yules rpquestlna the next block with a repeating
ENG. If the huffs machine times out because the time

betwesn any two characters i

m
11}

greater than five character
times or the block does checl, the buffer machine regquests
retransmission of that block with a repeating NRK.

The terminal indicates end of input either by setting
one of the end condition bits in the header or by including
a breakpoint character in the data. The buffer machine

acknowl edges this terminate condition with an EM character.

Multiple Terminal Communication

Multiple terminals can ke connected to the buffer
machines if they are first corrected to a data concentratar
mini-computer. The data concentrator must hardl e
mulfiplexing the information according to the specifications
described below. This allows the terminals to communicate
with the E00D as if they were independant devices, but also
allows the terminals to communicate with each other and
share the computing power and other resources of the remote

mini-computer.

A1l data transfer between the computers is done within
fixed length blocks of size specified using CIC function
524. The block includes a four character header (eight
bits per character) including a one or two character
checksum, ths data, and a two character end. sequence 1f

data transfer is not count controllsd.

The first header character is divided into fields as
follows:
BIT T : unused

06 : binary transfer 1f 1 (character conversion

iz rot performed)

02 - 05 unused
0g - 02 - the terminal rPumber from zeroc to seven

64

The second header character 1is divided into fielcds
as follows:

BIT 07 : unused
0t : end of record
0% : end ot file
04 : end of information
3 : end of transmission
00 - D2 - sequence mumber from zero to seven.

It is incremented gach time a buffer for any

terminal is transferred and ackrowledged.

Header characters three and four are used for a count
of data characters actually in the buffsr if thes tranzfer
is count conirollied. This count doss not include the header
characters o th

4]

checlkasum., If the trarafEr is rmot count
controlled, the header. contains & one or two character
checlsum. The checksum twpes are mors fully described in

the Blocked Single Terminal Communication section abowve.

If the transfer is not count controlled (as set'using
CIO function 524), a twe character end sequence (DLE-ETX
of octal wvalus 020-003) is used to indicate the end of a
buffer. In order to insure the and ssquence newvsr occurs
in the data, an extra DLE character must be inserted
immediately following any data DLE by the sending computer.
The receiwving computer must remove the second DLE of =ach
DLE-DLE combination. These inserted OLE characters
contribute to the total data count but not the checlaum

computation.

When the buffer machine receives a write function for
any of the terminals (up to seven per line), it sets a
reguest bit corresponding to that terminal in an output

request character. When the buffer machine receives a reac

E5

function for any of the terminals, it sets a ‘+reqguest bit
corresponding to that terminal in anm input request
character. Rt one second intervals, the buffar machine
transmits An EMQ character (octal value D05), followsd by
the input reguest character, followed by an STX character
(occtal walue 0023, and the output request character. The
data concentrator computer has the option of processing
any of the request bits for either input or output although

only one cperation at & time can bes performed.

When the data concentrator computer has a buffer
available for a specific terminal and the buffer machine

has set that terminal's request bit, indicating output is

waiting, the concentrator responds with an acknowledge
character (octal walue DOB) followed by a response character
with that terminal's enable bit set. Upon sesing the
acknowl edge, the buffer machine transmits & buftfer
containing the four character header, the data, the
checlksum, and end sequence 1f the transzfer is rnot count
controllsd. If the data is not correctly recelwved by the
data concentrator, 1t responds with & hegative acknowl edge
character (octal valus 025} followed by a character
containing the enable bits. The buffer machine then
retransmits the buffer. When the buffer 1is recelived
correctly, the concentrator sends another acknowl edgs

character followed by & character containing the enable
bits for the next transfer. |

When the data concentrator has a buffer of data from
a specific fterminal and the bkuffer machine has set that
terminal s enable bit indicating that the EB000 is waiting
for input, the concentrator tranzfers the data. Thi=
transfer must include the header, the data, a checlksum,
and an end seguence if the transfer is not count controlled.

The buffer machine, upon receiving the data, computes the

66

checksum and, if it does not check, responds with a negative
acknowledgze., If this negative acknowledge is received,
the dats concentrator must retransmit the bad buffer hefore
any other input requests are processed, If the buffer
checks, the buffsyr machine transmits anothsr ENG, 5TX, pair

with accompanying enable bits, and the process continues.

67

MONITOR FUNCTIOMS

The previous sections of this chapter have discussed
the Modcomp data concentrator system as it functions to
provide communication betwesn the COC ES500 and terminal
devices. A1 such communication is controlled by the 6500
with Modcomp processcors acting as slaves to the information

in each function block. There are, however, a group o

4,

processors which are activatsd based on terminal input for
internat (to the Modcomp)d monitoring, control, and

diagnoslis.

Any Modcomp terminal can be enabled as a local monitor
as indicated by a bit in the device status. If this bit
is set, the CVYTIA processor examines the f{irst character
of each input line. If this is & dollar sign (the monitor
function idermtifier), and the next three characters are
a legal monltor function, the characters are not moved to
the TCB circular buffer chain, but rather diverted to the
monitor processor. Since thez character comparison is not
made wuntil after corversion to display code, any terminal

can act as a monitor,

There are two classes of monitor functions for gereral
core monitoring and modification and for display of the
various contral blocks assignrned to the terminals. The
syntax and functional descripticon of each is described helow
beginning with the general functions as follows:

BRER, FIRST, LARST
This ABsolute Read function displays core locations
FIRST thraough LAST in hex forhat, eight words per
terminal text lins. ' '

68

#ARW, LOC, VALUE
This BBsoliute Urite function sets the core location
LOC to the hex wvalue VALUE.

FUWTH, LOC, CN
This WaTcH function displays the hex walus of
location LOC each time it changes up fo CH times

or until an attention character is entersd.

#STA
This STRAtistics function displays formatted system
statistics such as input and autput' 6500 function
counts, channel errors detected, average and worst
case response - times, and buf fer utiltization
information.

$ELM, TERM ‘
This Enable Local M
terminal, TERM, +t

Q

nitor function enables another
o executs monlitor furnctions.
DM, TERM

This Disable Local Monitor function disakless another

terminal from executing monitor functions.

The second class of monitor functions permits the
displtay of terminal contral kloclks and terminal status
blocks associated with each device and the sites control
blocks associated with each charnel. Neote that, f{or each
function, the wvalue TERM reafers to the abhzolute octal
terminal number wvalue. Their syntax and functional
description are as follows:

BTCB, TERM,FIRST,LAST
This Terminal Control Block function displays the
contents of the TCB for terminal TERM from word
FIRST to word LRST. If FIRST is null, ths entire
sixteen word block is displaved.

69

#SCB, TERM, FIRST, LAST
This Site Control Block function displays the
contents of the SCB's for terminal TERM from word
FIRST to word LAST. If FIRST i3 null, the entire
thirty-two word SCB's are displayed. ‘

#TSA, TERM
This Terminal Status Area function displays three
word status for terminal TERM as it is being copied
to the 6500,

#CLR, TERM
This CleaR function resets the terminal TERM locally
in exactly the same way that a RESET function from
the 6500 or an attention signal from the terminal

would reset it.

$USE, P
This USEr'=s function displays the terminal numbers
of all terminals with the status indicated by P
as follows: ‘
AT: attention waiting to ke processed
ER: buffer available for tranafer
HE: abort request walting to ke processed
IMN: input in progress
OT: output in progress
MD: non-data operation in progress
FFP: function pending
LG: terminal logged on
=: veszet opesration in progress
PR: terminal device reserved by Modcocomp

FR: Modcomp to 1IM communication in progress

™

CHARACTER COMVERSION

Character conversion from coC 6500 internal
representation (display code) to terminal dependent
character sets is done by table lookup with the tabkle
selected based on terminal type. Currently, only display
code to AMSCII i=s implemented. Since there are ﬁnTu slxty—
four display code characters and 128 ANSCII characters,

a two to one mapping is required. The first sixty-three

- characters [(octal walues 01 to 77, leaving 00 as an escape)

map directly to ANCSII aszs indicated in the table bslow under
the NORMAL column. These may be packed two display code
characters per twslwe bit byte or one per byte as long as
the character is left justified and zero filled. The second
half of the ANSCII set iz accessed by setting the upper
six bits of a byte to zero so that the lower six bits become
the index to a table specitfisd below wuwnder the ESCAPE
column. Mote that ESCAPE-00 (a zero byte) conwverts to a

only for special characters (CICO functions %30 and 534).
Otherwise, it is & line terminator i1f on an sven G500 CH
word boundary or converted to kilanks (58555) 1f not.

71

A COMPUTER COURSE FOR THE EMGIMEERIMG DESIGMER -

The previous chapters discuss the development of a
graphics oriented data concentrator system +to support
tems, howesver, are riot

engineering dasign. These svys
generally available to engine
o

=

ers. It is the purposs of
this chapter +t detall the information and background
necessary for an englneer to supervise the implementation
of such & system. In this way, that enginesr faced with
& design problem should be able to develop a computer tool
for its solution in the same way he might wuse a prototype

model as a design tool. The following sections describe
the material actually presented to mechanical enginsers

in such a computer systems coursze.

72

GRAPHIC OUTFUT DEVICES

Engineering design is, in wirtually all cases, the

i
design of things- cams, carborators, nazz]es, gears. Qne
of the most time consuming aspects of design i
the trial cases, but it 1is 1 dnly to the -
analitic evaluation (tollerences, i &
ssembxly) but to the assthetic svaluation. Grapgh
from the caomputer is therefore an obvious po

to the .design process

There are dozerns of graphic output devices available
ranging in cost from hundreds to hundreds of thousands of

dollars. Four major criteria for selecting such devic

m

are defined az {follows:

1: Resclution is the number of addressable points per

inch along a plotting axis

2: Window Size is the drawing area in inches =long the
plotting axes
3: Cost 1s partially the initial dollar investment in

the device, but it &also includes the drain on the
overall computing system required to drive 1t

is the rumber of resolution points which can
be plotted per second

In addition, graphic output devices can be clasified
by form of the output. The ma: zses, along with

]
typical criteria, are enumerated as {ollows:

1: The llna printer is a readily accessable device which

can be used for lTow resolution graphic output., It

Y
\

73

typically has a window size of sleven by seventeen
inches and a resoclution of ten points per inch.

Another readily accessable device is the television
with a resolution of 512 by 256 points per screen
dimension. It is extremely difficult to drive,
however, ' since the screen must by refreshed sixty
times per second.

Probably the most widely used device for enginesring
drawings 1is the incremental plotter. It has a
resoctution of 200 points per inch and window size
of thirty inches by 144 . feet (a roll of paper).
The cost is between $5000 and #30,000. S5ince this
type of plotter actually draws (pen movihg on paper),
i1t is slow relative to other devices. Typical speeds
are about 300 points per second.

Another type of ;utput devics is thp'electrostatic
plotter. It operates by charging (or heating) a
special paper at each point to be plotted. The paper
then passes over an ink supply which sticks +to the
charged points. The resolution 1is akout eighty
points per inch over an eleven inch by fifty foot
(rol1) plotting arsa. The speed is very high (many
inches per second) and the cost about #15,000.

The simplest Cathode Ray Tube display (CRT) is

"normally called & Memory or Storage scope. HAs the

name implies, the lines are stored by the screen
(on charged phosphorous) where they will sfay without
fading for about fifteen minutes. The resclution
is a&bout 170 points per inch over a six by eight
inch-p]otting area. The memory scope’'s speed depends
on the rate of transmission to the central computer

74

as 1t generally requires four characters per line

dv-awn. This type of scope is avallable for about
#$8000.

6: Another type of CRT display is called a Refresh twpe
since the screen phosphor does rot hold the picture
for more than a few hundredths of a second. {The
screen must be refreshed thirty to sixty times per
second.) Unlike with the Memory scope, a&namation
is possible by changing the picture between
refreshings but this requires 3 computer to
contirnually send informaticn to the display. The
Fesolution is gernerally about 125 points per inch
over an eight by sight inch plotting area. The cost,
including the computer to refresh the display, ranges
from %i10,000 to #100,000.

75

GRAPHIC INPUT DEVICES

R ‘reasonable requirement of the computer solution to
& design is that the designer he able to input information
graphically as well as receive ocutput graphically. Many
graphic input devices are avallable. Generally, theses allow
the wuser to ‘sketch' - or "point to' cbjects on the screen
with some external device connected to the display. Since
this requires the computer follow the input in a real time
mode, 1t may be expensive in terms of computer costs unless
a vrvemote minicomputer is uséd. Regardless of how they ars
used, a list of the more common input devices along with
a description of how they functionm follows: ‘

1: One of the first graphic input devices avallable
was the "mouse’. It is a small (mouse shaped) unit
which can be easily held in the palm of the hand,
having two perpendicular vollers on the bottom.
As +this mouse is rolled around on a flat surface,
the rollers turn causing & change in the resistance
of potentiometers to which they are connected. This
change in resistance is detected by the CRT terminal
which moves a tracking dot (or cursor) around the
screen corresponding to the movement of the mouss.
Such wunits generally cost about #5500 and have a.
resolution equal to that of ths terminal to which
they are connected.

2: A joystick (much like an aircraft control joystick)
operates in much the same way a3 a mouse. ' The stick
is connected to two perpendicular - potentiometers
which indicate its horizontal and wertical
displacement.

76

3: A somewhat different device, more suitable for

tracing information into the computer, is called
the tablet. It is gensrally composed of a
rectangul ar drawing area bordered along two
dimensions by microphones. The tracking pen has
a spark generator which can bhe heard by the
microphones. Since ths device knows the frequency
of the spark and the time it takes +to bes heard by
the microphones, it can compute the dynamic location
of the pen. Tablets general]yvcost shout H1000 and
have a resoltuons of 200 points per inch.

The most compllcated, but often most convenient,
input device is the light pen. It consists of a
photocsll mounted on a rod which looks much Tike
a pen. The photocel]l "seses’ the beam as it draws
the picture and interrupts the CPU, indicating to
it the horizontal and wertical coordinates of the
pen based on the point the beam is drawing. Light
pens generally cost shove $2500 and have the same

resolution a3 the CRT to which they are connected.

T

INFORMATION REPRESENTHTION WITHIM DIGITAL COMPUTERS

The smallest unit of information within the digital
computer is the bit (binary digit). It can be thought of
as simply an on-off switch., If all you are interested in
is storing & single condition (input ready, sign is
negative, initialization is complete)l a single bit is
enough. If, howsver, vwou nesd to store a character from
a terminal, or a numeric value, the bits must be grouped
into targer wnits (called words) to be useful. Computer
manfacturers group bits into words of widely warying size
(from eight to sixty bits) so it is difficult to discuss
internal representation in general. For that reason, the
types of information which are typically stored are
discussed below along with the number of kits reguired by
each.

Integer numbers are essential for any computation.
Llsually the entire computer word is used for this type of
representation. The largest number which can ke reprezented
is (2¥*N-1) where N is the number of bits. (For example,
.a sixteen bit machine can represent numbers from zero to
B4,383.)

There are three common wa o express negative numbers

=

vs t
significant (N-1) bits for the
it ot

all of which wuse the lesast =
value and the most significant bi o indicats the sign
(+ or -J). The simplest is to set the most sigrificant bit
to one if the number is negative: Since it proved difficulzt
for the computer to perform arithmetic opekatioﬂs with this
type of representation, another called one's complement
is used. Each kit is flipped ({rom one to zero or zero
to one) to convert from positivé to negative. Evern more
easily processed by the computer is & form of representation
called two's complement. It is the sane as one's complement

except that one is added after the complement operation
(bit flipping).

Floating point numbers require the word to ke divided
inte three parts. The sign and the coefficient of the
number are neesded as with integer walues. In addition,

an exporent (power of two) must be stored. Generally powers

of sixty-three are adequate so a3 six bit exponent 1s used.

Characters must also be stored within the digital
computer. Most large machines wse sixty-four character

sets 850 that six kits psvr charact

1

iz adegquate. Teletypes,
and most Tow cost graphic terminals, wse the ssven bit
ANSCII characters, and some 1BEM terminals use 258 character
sets. For this reason, IBM 360 and 370 machines, and most

minicomputers, use sight bits per character.

73

DIGITAL COMPUTER CHHRBCTERISTICS

There is ro universal agreesment about what
tdistinguishes a large scale computer from & wminicomputer.
The following table shows the major characteristics of
computers and the rgnge of specificaticons for largze scale

and mini-computers:

Characteristic Large Scale Mini-computer
Word size 32 to B0 bits 12 to 18 bits
Memory size > 32000 words = 32000 words
Cost #100K to millions #5K to ®100K
Cycle tims 02 to 1 micszec .4 to 10 micsecs
Registers g to 24 T to 7

Probahly the most significant difference between large
scale and minicomputers is the word =ize. If there are
less than 24 bits in & word, there are not encugh to permit
a full instruction sest ard directly addressed core memory.
The memory must be divided into blocks (generally between
512 and 2048 words per kloclk) with communication hetween
these blocks accomplished with indirect addressing or a
base register scheme. The philosophy of designing
compllers, assembl ers, cperating systems, &hol evien
application programsz is greatly changed when indirect
addressing must he considered,

The fol lowing is a list of assembly language
instructions for a typical minicomputsyr, the IMLAC, Each
mnemonic - is translated into 3 single machine Instruction..
The most significant bit (BIT 0) of each memory reference
instruction is the indirect bit indicating that the variable
field (BITS & through 158) contains the address of the memory

location which contains the sixte=n bit address on which

80

the instruction is to be performed. If the indirect bit
is ~ not set, the wvariable field for memory reference
instructions contains the address of the memory location
on which the instruction is to ke performed. BITS 1 through
4 contain the instruction codes thereby permitting sixtesn
possible memory reference instructions.

Memory Reference Instructiars

JHMP: Jump (divert the central processor] to the memory
location. specified in the variables field.

DRC: deposit (store) the contents of the accumulator
into the memory location specified in the wvariable
field.,

XAM: exchange the contents of the accumulator with the
contents of the memory location specified in the
variahle field.

I5Z2: increment the wvalus in the MEmory location
specified in the wvariable field and skip (jump
over) the next instruction if the result is zero.
The contents of the accumulator is not changed.

JMS: jump to a subroutine whose initial address is
specified in the wariable fisld. The computer
stores the address of the next location in memory
ithe Jlocation after the JMS instruction) in the
first word . of the subroutine and diverts the
central processor to the second word in the
subroutine. To return frum the subroutine to the
calling program, execute an indirsct jump through
the first word of the subroutine.

AMD: logically AND the contents of the memory location
specified in the wvariable field with the contents
of the accumulator ard store the result in the
accumul ator.

I0R:

®OR:

LAC:

RODG:

suB:

SAM:

81

inclusive OR the contents of the memory location
specified in the wvariable field with the
accumul ator and stors the resul t in the
accumul ator.

exclusive OR the contents of the memory location
specified in the variahle field with the
accunul stor and store the result in the
acounul ator,

load the contents of the memory location specified
in the variable field into the accumulator.

add the contents of the memory location specified
in the wariable field to ths contents of the
accunul ator and store the resul t in the
accumul ator.,

subtract the contents of the memory location
specified in the address field from the contents
of the accumulator and store the result in the
accumul ator. _

compare the contents of the MEMory location
specified in the variable field with the contents
of the accumulator and skip the next instruction
if they ars the same. Neither the memory location

or the accumulator is altered.

Two. additional instructions which the IMLAC does not

have but

follows:

MLT :

DIV:

which are common to many minl-computers are as

multiply the contents of the memory location
sepcified iIn the wvariable field with the contents
of the accumulator and store the result in the
accumul ator.

divide the contents of +the accumulator by the
contents of the memory location specified in the
varliable field and store the result in the

accumul ator.

82

Faor each of the instructions above, the indirect bit

is set

hy the assembler if an I is added as a prefix to

the instruction. For examplie, an indirect jump would be

specified as IJMP,

Instructions Which Rlter the Bocumul ator

CLA:

CHMA:

RAL:

RAR:

SHL.:

clear the accumulator to zero (zero each of the
i

sixteen bits in the accumulator).

t

perform the one's complement oper on on the

g

pra !

accoumul ator ard - store the resul i the
accurnul atoy.

alo

—

form the two's ocomplement operation on the

ol

v w]
ceurnul ator and storse the result back ;n the
acounul ator,
rotate the contents of the accumulator left one,
two, or three bits (specified in the variable
field). The most significant bit (BIT 0) is
rotated into the overflow or link bit which is
an extention of the accumulator. The contents
of that 1ink bit is transfered to the least
significant bit position (BIT 15) during =ach bit
rotation.
rotate the contents of the acocumulator right one,
two, or three bits (specified in the wvariable
=

field). The contents of the overflow or link bit

cuwhick is an extension of the accumulator iz rotated

into the most significant bit position. The

contents of the Jleast significant bit position

is rotated into the 1ink bit.

shift the contents of the accumulator left one,

two, or three bits as specified in the wariable

field. The most significant kit is rot shifted
i

and zeros are shifted in to the least significant

SHR:

83

bit positions.

shift the contents of the accumulator right one,
two, or three bits as specified in the wvariable
field. The walue of the most significant bit is
not changed but is shifted into bit position one

(sign extension).

Test and Skip Instructions

The

following instructions test the accumulator or

the status of external devices and skip over one instruction

if the test condition is met.

H5Z2:

RS

RSF:

RSM:

TSF:

TS

slkip the next 1instruction 1if the accumulator is

Zero,

i
w

skip the next instruction 1f the accumulator
not zero.

skip the next 1Instruction if the accumulator is
positive or zero.

skip the next instruction 1if the accumulator 1is
minus.

skip the next instruction if a character has been
entered from the kevhboard. , |

skip the next instrustion if no character has been
entered from the kevboard.

skip the next instruction if & character is waiting
to be read from an external device.

skip the next instriction if no character is
wailting from an external device.
skip the next instruction 1f an external device
is ready to accept a character.

skip the next instruction 1f an external device
is not waiting to receive a character.

a4

Input/Output Instructions

KRC: OR the character entered from the keyboard into
the elight least significant bits of the
accumul ator.

RREC: OR the character sent from the external device
inte the least significant wsight bits of the
accumul ator.

TPC: send the contents of the least significant eight

bits of the accumulator to an external device.

Instructions Which Control the Display

DOM: turn the display processor on.

DOF: turn the display processor off.

DSF: skip the next instruction 1f the display processor
is on.

DSM: skip the next instruction if the display processor
is off.

SSF: skip the next instruction if the forty cvcle clock
has timed out. |

S5SM: skip the next instruction if the forty cyecle clock

has rnot timed out.

SCF: reset the forty cycle clock to time out in one
fortieth of a second.

DLA:

0

Py the initial address of the display

e

o
netructions to the display processor.

Execution Cvcies

The computer execution of each instruction may consist
of one, two, or threese indepsndent cperations called cycles.

During the first, the FETCH cycle, thz full instruction

85

word 1s loaded from memory into a MEMORY RDDRESS REGISTER
and an INSTRUCTIOM REGISTER. For the IMLAC, the memary
address register contalns the low order eleven bits of the
instruction word and the instruction register contains the
upper five bits including the 1indirect bit. Instructions
which do not referesnce memory are executed during the second
half of the FETCH cvcie,

Those instructions which involwve indirect addressing
require & second cyele, the DEFER cycle, during which the
sixteen bit indirect address 1is Joaded into the memory

35 register. During the sscond half of the DEFER cycle
ftor the FETCH cycle if indirect addressing was not
specified) the walue of the memory location now containsd
in the address register is loadsd into the memory buffer
register.

The f{inal operation, the EXECUTE cycle, performs the
operation and stores the result in memory or the accumul ator

if necessary.

MNote that a single instruction may vrequire as many
as threes machine cycles. Hlthough mini-computers are often
specified by ocycle time, this may be a misleading unless
coupled with the number of cycles per complete execution.
Further, the three registers mentionsed above (memory
address, instruction, and memory hbuffer) shkould not be
included &as general registers in the specifications since

they are not directly available to the Programmer .

Interrupts

A hardware characteristic of most computers is that

one program may be interrupted ky another of higher

86

priority. This interruption is performed sutomatically
generally at the reguest of an externally connected device
or timer. Its purposs is to insure that the extsrnal
devices - are serviced immediately or so that no single
program executes too long without giving a chance to other

programs which might also be in memory.

The simplest type of interrupt, which is used by the
IMAC, is for the computer to automatically force a rsturn
jump (like the JMS instruction) to location zero. The
subroutine which processes the Iinterrupt must then start
at location one and can treturn to ths interrupted program

with an-indirect jump through location zero.

To permit multiple devices to be connected to (énd
interrupt) the IMLAC, each sets a unique bit in an interrupt
queue register just before initiating the interrupt. The
service subroutine can then test each interrupt queus bit

to determine which device to service.

A slightly more elaborate interrupt scheme involves
setting aside specific memory locations (0 through 15 for
exampTeJ which contain the initial addresses of ths service
subroutines for each extsrnal device individually., The
computer then forces an indirect return jump to a different
location for sach device, esliminating the need for checking
bits in an interrupt gqueue register to determine which

attzntion,. A still more elaborate extension

o

s

device r

1]

of this schems involves assigning a different priority to

[a]
(]

each dewice so that interrupt routines may themselwves be

interrupted.

87

ASSEMBLY LANGUAGE EQUIVALENTS OF FORTRAN STRTEMEMTS

In order to clarify the rasult produced by sach of
the assembly language instructions listed above and to show
how they may be used to perform useful calculations, the
assembly language eguivalents of the major FORTRAM
statements are listed belou:

DIMENSION X (100),%(50)

bt B5S 100 , FESERVE 100 MEM LOCS FOR X
Y BSS 50 FESERVE 50 MEM LOCS FOR Y

DATA Ix, IV /10,5/

Ix DRTAH 10 | RESERVE 1 LOC. FOR IX =10
Iv DRTH 5 FESERVE 1 LOC. FOR IV =5

and wvariable initialization, each wariah

In addition to reserving memory locations for arrays
le wused in thes
1

program must he assigned & unigue memory ocation. This
is unlike FORTRAN where the assigrment is automatic. This

memory location alltocating can be done as follows:

H | B35 1 RESERVE OMNE LOCATION FOR R

B DHETAH 0 RESERVE OME LOC. FOR B =0

Cc ZR0 =} REZERVE 1 LOC. FOR C = (R)

Mote that in the third example, if the memory © lacation
assigned 1o A were 200, the initial value of C would bhe
200.

As indicated in the examples, there are four fields
o an assembly language card, separated by one or mores

blarnks. The first, generally columns 2 through 8, contains

&8

the label. The second field, generally in columns 10
-throlgh 16, contains the instruction, The third field
contains the wvariable, either a label or numeric value,
in columns 1B'through 28. Finally columns 30 through 72

may contain a comment.

H = B+C
LAC =
H0D C
DRC (=

GO TO (A,B,C,D), IX

LAC IX

ADD TABLE

DARC TMPAR

LJMP TMFA
TRELE ZRID THELE

JrP H

JMP B

JHP c

P D

IF(A.GT.B} GO TO C

LAC B
sue H
HSH

JMP c

DO IEMD I=M,M

LAC N

LOAD THE VALUE IN LOC. B
ADD AC + THE WALUE IN C
STORE THE RESULT IN LOC A

LOAD THE VALUE OF THE IMDEX
COMPUTE THE LOC. OF THE JMP
STORE THE LOC. WITH THE JMP
JUMP TO THE JUMP IMNSTR

CSKIP MEXT INSTR IF + OR 0

INITIAL IMNDEX VALUE

DAC

sSuE

CAC
LOOP

I5Z
IEMND R

I
M
THMPA

I
TMPH
LOOP

CALL SuUB1 (%,¥)

JMS

DATA

ZR0D
ZR0

SUB1
2
=
it

69

STORE INITIAL VALUE IN I
COMPUTE NUMEER LOOPS

FIRST INSTRUCTION OF LOOF
LAST INSTRUCTION OF LOOF
INCREMENT IMNDEX

IMNCREMENT - {LOOPS)

RETURN JUMP TO SUBROUTIME
MUMBER OF PHRAMETERS
ADDRESS OF THE FIRST FARAM
HDDRESS OF THE SECOND PRRAM

The computer stores the address of the memory location

after the JMS instruction in

SuUB1t. It then

SUBROUTIME SUB1 (X,Y)

SuUB1 DHTA

ILAC

o}

I e BN R
D D
G N O I

o
L
<

jumps to

0
SuB1

PRRAMS
SUB1
SUEH
XFDR
PARAMS
51
DONE
SUB1
SUB1

memory location Tabelled

the memory locatlon after SUBT.

FOR STORAGE OF RETURN RDR
LoAD THE MUMEER OF FRRAM
TWQ"S COMPLEMEMT

STORE

LORD ADDRESS OF X PHREAM

IMNCREMEMT THE PARAMETER CNT
IF COUNT MNOT YET ZERO '
.CELSE DOME COPYIMNG PRREMS

LOAD HDDRESS OF Y PRRAM

DONE

100

DRC YROR
IsZ SUB1
IJ1P SUEA

RERD(5,100) IX
FORMAT (05)

LHC COUNT

CIA

DRC THFA
CLH

DRZ IX
ASF

JHE LOOP
CLH

RRC

= OFFSET
TOR IX
DRC IX
SAL 3
I5Z TMFPA
JHE LOOP

30

REFPEAT FOR ALL PARAMS

POINT TO MEXT IMST. IN FROG
PERFORM THE SUBRCUTINE OP
RETURN TO CRLLING PROGRAM

NUMBER OF CHARS FROIM FORMAT

SKIP IF CHAR WAITING

..ELSE wAIT

CLEAR ACCUMULATOR

READ IM CHARACTER

COMPUTE OCTAL VALUE OF CHAR

BUILD NUMERIC VRALUE
TMCREMENT COUNT
. AMD GET MEXT CHARACTER

91

COMMUMICHTION WITH EXTERMAL DEVICES

The mini-computer is commonty used to communicate with
external devices and is therefore usualfy equipped with
hardware to interface it to multiple external devices.
There are many types of multiple device interface schemes

{multiplexors); two of the most common are described below.

ng the computer to all external devices (i

3

i
paraliel) are a set of data lines (usually one line per
bit in a memory word), a connect pulsze line, a function
pulse line, a data ready pulse line, a reply line, a iead
gnable line, and a write enable line. To initiate a
transfer of information between thes computer and a specific
device the computer loads the device number onto the data
Tines and pulses the connect line. The device reguested
Iogically connects while all other devices on the parallel
lines logically disconnect (all devices are always
physically connscted). Once connscted, the device reguested

pulses the reply line indicating it can sccept a command.

The computer might then load a function code on the
data lines and pulse the function line. Wrhen the device
detects the function =ignal, it reads the function code,
processes the function, and again pulses its reply line.
(Typical functions might bes erase a CRT screen, skip to
the top of & page on a line printer, or position ths. pen
on & plotter.) Finally, to transfer the data, the computer
would turn on the read or write line. In the case of a
read operation, the computer would pulse the data line each
time it could accept more iInformation. For e=sach pulse,
the device loads the data on the data lines, pulszes the
reply line indicating the data is ready, and waits for the
next cdata pulse. The read is terminated when the read line

is turned oif by the computer. For write operations, the

computer loads the data on the data lines, pulses the data
line, and waits for a reply signal from the device before
loading the data lines with the next message.

Mote that many bits may be transferred in parallel
along the data lines for each data ready/reply sequence.
Many types of transmis

.

sion use only one data line to
transfer information in series, but the request/reply schems
is still useful.

In some more complex systems, there are another set
of lines which transfer the status of the device (on, ready,
error, etc.) to the computer continuously., Using this
status information, the computer can connect to each dewvice
in rapid sequence checking the status of each to determine

which external units nesed attention.

For communication with wvery simple devices, like
teletyps terminals, a much simplier scheme is often used.
For-it there need be only one line. In this schems, the
computer or device (depending on the direction of data
transfer) keeps ths line on until it is ready +to send a
single character (usually 5 to 3 bits). To transfer a
character, it turns off the line and then alternates turning
it on and off corresponding to the bits in the character
being sent. The line is switched at a rate knomn to hboth
the computer and the device so that the recelving unit knows
when to check the line for esach bit relative to the initial
off (or start pulse). _

93

THREE DIMENSTIONAL. PLOTTING

Many engineering problems involve three dimensional
objects. It is important, in keeping with the philosophy
that the computer present information in the most convenient
form to the user, that such obhjects be presented in a
pictorial as well as orthographic form. FPictrolal implies
perspective drawings with hidden lines rvemoved and with
the ability to view the object from any point in three
dimensional space.

The control logic for a general hidden line removal
progiram written by P. R. White of ths Computer Rided
Design Group, Furdue University 1is describsed below. The

INPUT routine collects the (X,Y,2) coordinates of each
point, the endpoints of &ll lines, and -the endpoints of
all planes. These may be specified by the user either on
data cards or through FORTRAM likbravry routines PLAMNE, HOLE,
and LINE. The INTREC routine then computes the
intersections between planes, and lines and planes, and
adds lines of intersection to the line arrays. Riter
reading object translation and observer information, the
program continues by rotating object coordinstes so that
the line of sight wector 1is collinear with the 2 axis.
Mext, the PERSFE routine fills arrays with the two
dimensional coordinates of the ohject as it appears on the
picture plane.” Finally, subroutine WVISIBEL removes ths
hidden lines, passing the rasulis for scalling to SIZE and
then to DRAYW, producing the two dimensional picture. R
more detailed description of the major routines mentioned
follows below.

94

Intersections

Once the user specified lines and planes have been
read, the lines resulting from intersections of planes must
be computed and added to the 1ine. table. This 1is
accomplished by considering =sach palr of planses sepsrately.
Every line making up one of the planes is processed, first
to computle a dot product with a normal to ths other plane,
If +this dot product is zero, the two are parallel. If not,
the intersection point is determined by thes simultansous

solution of the squations of the line and plane as follows:

(¥=K117/(K2-%1)=(¥Y-¥Y1) 7 (¥Y2-¥1)=(2-21)7(Z2-Z1) (1ine)
Ax + BY + CZ =D (plans)

Hifter all the intersection points have been camputed;
the resulting intersection lines are added to the lins
array. If there are seaveral interssction.points (resulting
from convex planes), this may involve alternating between
points drawing a segment and then skipping one until all
the actual lines are added.

Obiject ftranslation

The uzer has the ability +to specify the chaerver
location, what point he is Jlooking at, and the object
translation, all within & thres dimensiona coovrdinate
system. In order to simplify the perspective and hidden

line removal operations, the object i

it

always transformed
(by the program) so that the lins of

sight is collinear
with the 2 axis.
This transformation is accomplished by first

translating the ochjesct so that its origin is at the point

being looked at by the chserver. The object is then rotated
about the X and ¥ axes seperately to accomplish collinesarity

with the Z axis. The rotation is accomplished using the

general transformation matrix:

UxV () +C (43 UxUyW () +UzE () U2V () -UyS ()
[T] = UsUwWi4)-UzS () Uy () +C(4) UylzV (4) +Ux5 (4)
UzUsW (4) -UyS () UyldzV () ~UxS () Uz2W (4 +C(+)

where: U is the unit vector
V(4 is the versine (1-c(4)) of the rotation
Ci4) is the cosine of the rotation argle

Q

o

Dl
I

54} is the sirne of the rotation angle

For the orthogonal coordinate system required, this
matrix can be substantially reduced. Hssuming the angles
of reguired rotation ahout the ¥ and ¥ axes to be "a' and

"hb' respectively, the matrix bscomes:

C(b) 0 -51(h)
[T] = 5(a)5(b) - C(a) S(a)C(h)
ClalS(b) -S(a) ClalC(h)

Perspective Drawing

Because the output of the transformation routines
places the observer on the Z axis relative to the object,
projecting this chject onto a two dimensional picture plane
is simplified. The picture plane is talen to be the (X,Y)
plane at (2=0) so that the coordinates of any point on that
plane (Xp,Yp) can ke computed from their three dimensional
values b? similar triangles as follows:)

Xp = ®(DIST)/Z
Yp = ¥(DIST)/Z

96

where DIST is the distarnce from the observer to the picture
plane along the 2 axis.

The resulting lines on the picture plans are stored
for subsequent processing and plotiing.

Hidden Lirne Remowal

Once- tha obhject lines have besn projected with
perspective on the picture plans, all that remains is to
remove those lines which ara hidden by planes in front of
them. This is done by evaluating each Tine with svery
plane, determining which are hidden or partially hidden.

The gerneral process is outlined as follows:

1: Extend the line asz projected on the picture plans
until the second endpoint iz bheyond the plane's

boundaries.
2: Compute all points on the picture plane where the
projected, extendsd line intersects the projected

koundaries of the plana.

Extend lines from the obssrvation point through the

intersection points to the lins and plane and compute

the coordinates on the line and plane.

4: Compute the distances to the point and line from
the chservation point, determining whiether the line

iz hidden, or partially hidden, by (greater distance

than) the plane.

5: Add a1l points of interssction to the point table

in order from the origin to the endpeint of the line.

Ry

ar

If the original line is entirely hidden, delete it
from the Tine tahle.

If the originalA line is partially hidden, delete
it and add the line segments not hidden by connecting

intersection points from (5) above.

98

TIMESHARIMNG SYSTENMS

The first computers were small (usually less than 4K
of memory), slow (execution spesds in the tens to hundreds
of microseconds), and had ro external mass storage. They
were strictly one user at a time machines. Progyrammers
typically toggled their code 1 &t a tims, spent
a few hours debugeging 1t or getting answers, and turned
the machine over to the next user.

As computers got bigger - and faster, mass storage
devices (disks and tapes) were developed for them, and as
their costs rose, dedicating these machines to & single
user at a time becam2 prohibitive. Operating systems were
devel oped to allow batchs of programs for many users ti
be read onto mass storage frowm paper tape, cards, or
magnetic tape. Hzsemblers, and later compilers, allowed

users to write their programs 1in languages more natural
to them, with thes compilers providing conversion into
machine instructions. This mads programming easier, faster,
and more efficient for the machine, but it took away the
direct interaction bhetween man and machine, Man had to
formulate the entire solution to bhis problem kefore the

iant

Q

computer would consider it; the computer became &

m

alculator, no longer an interactive tool,

For years this batch programming made 1ts way into
industry, education, scienc most everything. HAs the
machines got still larger and féster, and apsrating systems
more sophisticated, man-machine interaction again became
possible. Instead of dedicating ths entire machine to &

the computer could be tched between many

(ﬂ

’ wi
users so fast that each thought he had the machine to

99

An experiment by Gold (Commun. . ACHM, no. 5, wvi. 12,
pPE. 243-259, vreferenced 1in Time Sharing System Design
Concepts by R. W. UWatson) comparsd the time required to
salve a problem using batch versus timesharing. His results
(typical of other studizss) showed batch reguired ninteen
man howrs while the timesharing solution reguived only'
sixtesn. The computer time used, as expected, was greater
for the +timesharing solution (5.74 to 1.25 minutes of CPU
time). But more important than eilther time comparison was
that the programmer's understanding of the problem was

hetter for those who uszsed the timesharing system.

There are many types. of timesharing svystems. These
range from extremely. specific purpose for such tasks as
file maintainance and retrieval, to special U ROSE
timesharing where a single language or computer aldsd design
program is avallable, to genesral purpose timesharing where

many langu

[vl]
3
[(]
o

ges are provided, and finally to batch systems
allowing on-line access. In what follows, we= will be

primarily concerned with the later since it implies the

1

most efficient use of computing resource

)
n

Four terms relate to a discussion of timesharing and
are defined as follows:

T: Multiprogramming rvefers to mnany programs sharing
a single computer's core mamory simul taneously.

This allows the central processing unit (CRU) to

Bl

switch from program to program without waiting for

i
the second program to bs loaded into memory.

2: Multiprocessing refers to more than one CPU executing

different programs in a single core memory
simul taneously. It is particularly beneficial if
smaller processors are ussd to perform the input

Ve

100

/ output operations and transfer programs hetween
mass storage and memory.

3: Remote Batch refers to a timesharing system which
allows Lsers to create and 2dit progyrams
interactively but which executes them as batch
REOgrams. In this +type of operation, the user has
no control over his program during 1ts execution.

4: Interactive refers to & timesharing system which
allows 2 user to communicate with his program while

it is executing.

As an example of how a multiprocessing system might
function, consider an interactive program communicating

with & wuser in a system processing continuous stream of

by ‘I
0

hatch programz. The system has

om

everal small computers
which can a&access the disk units and two very fast central

processing units which can initiate transfers betwesn the

disks - and core memory and execute programs which are in

this memory.

During the entire operation, ones of the small computers

is copying cards from the card readers to the disk units.
Each time it coples a complete program, 1t writes that
program’s disk address in a special portion of the disk

[y

&
along with the program nams, its size, times limit, lin
limit, and priority. Ht regular intervals, one of the CRU’
initiates a read of that speaial'éectiun of the disk into
a memory area often called the input gueus. Similarly,
as the CPU's complete programs, they write the disk address
of where the output has been stored by the program in a
special section often called the output queue. The smaller
computers then scan this aﬁtput gqueue, find the output from
a specific program, and copy it to a printer, completing
a batch program.

101

In the initial steps, this procedure is similar for
a program submitted from a teletype terminal. One of the
smaller computers, to which the terminal iz connected,
allows the user fa create a program, or access 1t from
another disk wunit, and perbhaps edit it. When he is ready,
the user submits the program to the larger cumputér for
execution. I bpur example, this simply mesans the smaller
computer writes the initial address of the program (which
is already on the disk) in the input gueue. '

Here, howsver, the similarity to a batch program ends.
The intesractive program is assigned & bhighsr priority so
that it goes into memory ahead of batch programs in the
input gueus. Hs soon as one of the programs currently in
memory terminates, needs one of the smaller computers to
transfer information, or uses up 1ts time slice, a CPU will
read the input gueue from the dislk, see the higher priority
interactive program, &and initiate reading it 1Into memory.
While this veading occurs, the CPU will probably continue
executing another program if one 1s in memary, but once
the intsractive one 1is completely in memory, 1t will be
executed ahead of a1l others.

The intevrasctive program will first be compiled
(converted from & sSource language like FORTRAM to machine
instructions), loaded, and then begin executing. Since
it is interactive, the program will no doubt attempt to
read from the terminal (hopsfully after writing what

-

~+

‘information it wants to read from the terminal) . Uhen the
T

CFU processes an input or outpu operation, it passes 1t
along (propagates) +to the smaller computer driving the
terminal. Since the usser will take & long time to read
the message or type in the response, (relative to the
machine tims of several million instructions per second)

the interactive program can be copied to disk (rolled out)

102

making room for a batch program to executes, As soon as
the input or output is complete,the smal)l computer asks
one of the CPU's to copy & batch program out to the disk
making room for the interactive one to continue executing.

Sharing the work required of a timesharing system by
in

an teractive terminal uwser is an important consideration
where the overall cost of the system 1z 2 factor. Since

the large computer costs approximately 100 times as much
as do the smaller computers, to which the terminals are
connected, as much work as possible should be done by the
smaller machines. Also, where posszible, the smal ler
computers should make the terminals look Tike disk units
to the larger computer. This will prevent writing new

programs to allow the large machine to commuricate with

‘the terminals since programs which communicate with the

disk units are a part of any batch syatem. In fact, they

are usually an extremely sfficient part since disk transfer

[—

s such a large part of the machine's function,

In systems where graphic terminals are connected, or
analoz devices controlled, thes interactive terminal becomss
a minl-computer and should share part of the overall system
wavrlk 1oad. A representative list of tasks within a
timesharing system and some2 comments about which computer

hest handlies those tasks {ollows:

1: Creation, editing, and display of data or program

U'I

sze2d terminals

.,.
R\

fi

This task 1is best handled by the small computer a:
iked above. If many high =p &
connected to the system, howewver, the small CDmplt
may not be able to keep up with information transfer
unless this task is dune by the large machine. '

%}

103

Compilation and assembly.
These tasks should definitely be handled by the large
machine as they are tno large to be sfficently

handled at any lower lewvel.

Syntax checking

Where {easible, this take should be handled by the
smaller computer 1f it is connected to the largsr
machine's disk wnits as in the example shove.
Ideally, the syntax should be checked &= the data
files are created.

Execution of programs

This task should be done by the large computer.
Its high speed, large core and disk storage capacity,
and ibrary functions available for hatch users,
make it better able to handle virtually any size

program.

Graphlic input and output

These taslks should be handled by the mini-computer
terminal. This relieves the other machines of
processi and storage responsibilities and provides

ng
better response at the terminal.

Formatting graphic information

This taslk should bs handled by the large machine
50 that executing programs can read or produce
graphic information of a single form regardless of

the input/output device it is associated with.

Control and corwversion of analog irnformation

This task should definitely be handled by the mini-
computer terminal to insure adequate . response to
the analog device.

104

8: Character conversion and data formatting

This task should be handled by the small computer
[

so that information for any terminad ar be
transferred by the large machine as 1if i+t

communicating with a disk unit.

ey e

105

COMPILATION, ASSEMBLY, AND LORDING

There are many methods of producing machlne
instructions f{or a stored program computer ranging from
specifying the individual bits for each instruction and
data word to skestching part layouts on a CET screen. fs

the methods become easier and more natural to thes user,

L

they bescome exponentially more difficult for the computer
system software. It is the intent wof this =32t o0f notes
to briefly discuss wvariouz methods of machine code
generation and then point out general schemes for, and

problems in, their implementation,

Machine language programming reqguires nothing but a
programmer and a machine with some way to s=t and read the
bits in that machine's memory. It has many disadvantages
(extracted from The Anatomy of a Compiler by John A M.
Lze} as follows:

1: all instructions must he entered in binary

2: all addresses must be absolutely defined

3: any changs in the program (such as inserting an
instruction) results in Shanges in all otheér address
fields

4: portions of previously written programs canrnot be
used without being modified to conform to the present

address assignments

The level abowve machine]ahguage is assembly language.
It is relatively easy to implement an asszembler to convert
from this language to machine code, but such aszembly
language solves all the above mentloned problems. There
is genesrally & one to one correspondence betwsen assembly
language and machine instructions, but the addressing is

handled with symbolic labels. This &allows thes user to

1086

insert instructions without changing address fields himself
and allows him to add previously written programs with

little or no modification.

The advent of assesmbly language also mads possible
the interpreter, a program which assemkles instructions
as they are entered (usua]iy from an oniine teletype).
Since this interpreter interacts with the programmer it
can inform him immediately of syntax errors and allow him
to se2 the results of his instruction on the accumul ator
and memory after sach entry.

The assemkler t owver machine
1

i i n
code, but sti l2 use to the englineer who is
ultimately interested in solving & problem, not weiting
1

& progranm. The gvel ahove the assembler is the compller
which performs the conversion from & procedurs oriented
language to wmachine cods. Procedure oriented language
[such a&s FORTRAM, ALGOL, and PLA1) require the user to
f

specify his problem as a2 set of procedures (groups o

(]

equations linked by control statements). Although there

are elaborate assemblers which may in cases be easier to

use than compilers, their difference is clearly marked by

the fact that compilsers are machine independent while
assembl ers are machine dependent.
Finally, a few problem oriented Jlanguasges have been
o

devel

&
ped which allow the wuser to specify his probklem to
(

v hi
the computer with rno conversion at all. He expresses 1t

as he would to a colleague.)
The compilation process reguires three major processes:

1: Read the source (i.e. FORTRAN) deck, scanning the

cards and generating a list of symbols referenced

147

and compressing the reqguested operations fi.e.
write, evaluate an arithmetic expression). This
first process therefore must wverify the syntax of
the statements . and produce error -messages where
appropriate.

2: Assign memory locations for all symbols referenced
and génerate machine code from the output of the

first process.

3: Optimize the machine code (optionally) and produce
a file containing the actual core image to be loaded

into the machine and executed.

Since there i i
for computers before a compliler iz implemented, it is
tempting to produce assembly language (not machine code)
statements &3 the output of the compiler. This is maors
easily debugged and can be fed into the existing assembler
to get machine instructions. It is, however, not nesrly
as efficient.

Properly handling symbolic references n a compller

i
is a difficult task 1f it is done efficiently. Hs each
1

i
symbol- is first wused, its name, type (rea

[kl
-
~
(M
o
&
A

logical, or complex), initial wvalue (if specified)

perhaps other information Tinking it to common blocks or
equival ences, must be stored in a table. Each time a symbol
is referenced, therefore, the complier must attempt to match
it with entries in the symbol table, referring to it hy
its table location if present or storing it in the table

if not.

Many schemes for searching thes symbol table are used

including, of course, simply starting at the top of thes

108

list for each symbol. A zomewhat faster scheme involves
dividing the symbol table 1into sections, one for - each
possible initial symbol character. This decrsases the tims
required to find a symbol provided most symbols do not start
with the same letier (such a3 I,J0,K,L,M,MN). A more
ef fective solution is to use some combination of the middle
characters in the symbol as an index into sections of the
symbol table.

Conversion of arithmetic expressions to a form suitahle

for gereration cof machine instructicons is simplified using

an intermediate representation known as Polish notation.

Each of the operators is assigned & priority (1:=, 2:+ and
= I and /, 4:7) corresponding to the order it is
processed according to the syntax rules of ths langque
The compiler scans the expression left to right until it
firnds an operator of priority egqual to or lower than the
first one it finds. It then brackets thes subsxpression
between these operators and the process continuess.

Once the expression has been fully brabl ed, it is
corwerted to Polish notation by again scanning Teft to
right. Each operand-operation-opsrand triplet is rearrangsed
(irn order corvesponding to the above operation priority
scheme) by removing the brackets and exchanging the second

operand and the ocperation. Thus [A+B] becomes AR+,

an ex

3
-
1)

[}

A El consider. the following FORTRERARN
arithmetic expreszszion: |
A=A+B/C1D

Applying the conversion mechanism outlined above, this
reduces to Polish notation as follows:

109

X=RA+B/ [CD1]
X=H+{BCDt1/
»=[ABCDT1/]1+
X[ABCDT/+]1=

Once the first process has been completed (the symbol
table is complete and expressions have been converted to
their Polish notation), generation of machine instractions
or assembly language is straight forward. Consider the

example used above:
X[ABCDt/+]1=

The generator routines nesd only scan the expression left
to right until vthey reach an operator, produce code
performing that operation on its preceding two operands,
and store the result in a temporary location to he used
as the second operand for the next operation. Continuing
the example:

XABCD1T/ +=

LAC C
EXP D
CAC T
XABT/ +=
LAC B
DIv T
-DRC T

XAT +=

110

LAC A
ADD T
oRC T
KT=
LAc T
DRC X

Of course, 1if machine code were heing produced, the actua)l
memory addres assigned to each ltabel (R,B,C,D,%,T)} would
be read from the symbol table and used as the address part
of each instruction,

The final (optional) process irvolves optimization.
This can be a very complex process but a simple continuation

of our example demonstrates som

i

obvwious improvensnts which

could be easily mads:

LAC C LAC C
EXP D ExP D
DRC T ROIV B
LRAC E ADD A
BARY T DR A
DRC T
LAC A
ROD T
DARC T
LAC T
DHC X

Mote the RDIV instruction represents the reverse divide
indicating the memory location is to he divided by the

accumul atoyr. It is easy to =ses that with the inclusion

=
of this instruction in the instruction set, and some other

111

easily implemented technigues, the resulting code (left

column) is significantly improved.

Once the machine code has beesn generated, it must be
loaded into the machine in order to be exscuted. This is,
of course, & simple copy procedure i1f no library or external
routines are wused, which is, unfortunately, not gererally
the case. Library functions like SIN, ©OZ, EERAD, and WRITE
are part of what makes procedure ariented languagés usable,
There are several approaches to Jloading thess library
functions and linking them to the user program, threse of

which are described below.

The most gereral loading technique requires the code
generating routines of the compiler to produce an external
reference takle in addition to the machins code. Each time
a library rvoutine is used, the compiler leaves itz calling
instruction's address field hlank [zero) and stores the

routine name and calling address in the external table.

~+

Rfter the loading program coplies he user's program 1nto
memory, 1t loads all library routines from dizsk or tape
as it reads their names in from the externsl table. It
must finally write thelr initial addresses over the program
address fields initially left klank as specified in the
tahle.

In some systems, the library 1is resident 1in core
memory. This means that it need not he loaded and that
the initial address of each routine is constant., The
compller can thersfore omit the external table and set the
address fields of the external references to predefined
values. The resident library approach, however, requires
the entire library to be in memory at all times.

112

Since most procedure oriented language programs use
(2

only & few library routines at a time, a more tficient

scheme involves a&allocating only small portion of core

&
to the library. Only the routines used nesd be loaded into

&
core. Unfortunately, this means that the initial address
1

of each vroutine varies from prog o program. The loader
: :

v am
can no longer assign 1t automatical ly.

A solution to this problem is to dedicate one core
location for each possible likrary routine so that, for
example, location 1000 is always associated with SIM, 1001.
with COS, etc. The compiller can then put thus dedicated

address 1in the address field of the instruction referencing
the library function. As the loader copies the core image,
it checks for address fields corresponding to entries in
this takle. If it finds one, it lcads the appropriate
library function into memory and storss its initial address
in the table. This dynamic library appruvach is simple for
the compiler, the loader, and greatly reduces the core

needed for library functions.

113

DIGITAHL. PROCESSING OF AMALOG INFORMATION

Most of the information discussed thus far pertains
to digital processing in which data is stored in discrete
form. Most real world (enginesring) devices, howsver,
produce analog {(continuously varying) signals. The rsason
for the emphasis on digital computation 1is that it is
significantly easier to process, evaluate, and store digital
information than analog. Fortunately, although a digital
value never exactly represents its analog counterpart
digital computers are able to maintain adequate accuracy
for most engineering appllﬁatlnn:. A sixteen hit machine,

l

for exampls, can store 64,384 dis

l‘{l
rl-

values psr word.

The problem, therefore, is not representation of analog

information, but its conversion to and from digital form

There is Jjust one basic procedure for converting dlfifal
infarmation to analog signals, but many for analog to
digital conversion. Regardless of the type of conversion,

there are three criteria for its description:

1: Range is the difference between the smallest and
largest signals to be considered

N

Resolution is the =smalle=s unit whick must be
discernable in the conversion process

3: Speed is the number of values which can be converted
e

R typical enginsering application mizght reqguire a ten
volt range, a resolution of 1/100 wolt, and 2000 corwversions
per second. Corwersion units, to meet tIEHE requirements,
would cost in the neighborhood of $1000 but costs ars
decreasing rapidly with integrated circuits.

114

Digital +to analog cornwersion is generally sasier since

the output exactly matches the input, requiring no searching

for a most nearly correct approximation. A typical
converter is composed of a veference power supply, a digital
register containing the value to ke conwverted, an
operational amplifier with feedback register, and a

resistive network connecting the supply to the amplifier.
The network is composed of one resistor per hit in the
digital register which 1is switched into the network, in
parallel to the others, if its corresponding bit 1is szet.
Thess= tresistors are chosen 30 that their walues are
proportional to the significance of thsi respective bits.

Since the resistance of the network is pruportinnal to the

overall gain of the converter, the analog wvoltags 1is
available as the output of thes amplifisr a&s soon as the
digital register is loaded causing the switche in the

rnetwarl to be set.

Rnalog to digital corwversion, however, is not as sinple

since the digital value is only an approximation [(to one
resolution nit) of the analog input value. Approximation
generally involves trying several solutions and comparing

them to the actual input wvalue. This is difficult due to
problems involving implementation of decision logic in
analog f{ovrm. For this reason, most RA/D corverters use
digital logic for the approximation coupled through a 0O/F
cornverter to produce the analog trial solutions. This

analog output and the original signal are {ed

[us
)

int
gnal larger in digital

" A -

comparitor which indicates which =i

form, serving as a feedback to the decision lngic.

The simplest 'application of this approach irnvolves
incrementing the digital register (counting) very rapidly
until the comparator changes state. The resulting walue
in the register is the digital eguivalent of the analog

115

signal within one +resolution wunit. Unfortunately, the
conversion speed wvaries depending on the magnitude of the
analog signal.

For systems with analog sighals whick do rnot wvary
drastically hetween readings, & slight modification to this

counter technigque significantly ionUVUJ the speed. It
irvolves replacing the counter with an up-down tracker which
is not reset to zevro bhefore each sample. The unit then
steps up or doon (depending on the signal from the

comparitor) from the last sample point.

A procedure which is much faster but more difficult

to implement 1s known as succ

ITI

szive approximation. The
decision logic first +tries the m1dp01nt of the range
determining from ths resulting comparitor output which half
of the range contains the signal, It contirues this
process, always checking the midpeint of the remaining trial
area, so that it takes anly one more approximation than
bits in the digital register. This is hundreds to thousands
of times faster than the counter method.

H problem with movre sophisticated conversion techniques
is that they tend to oscillate about 3 solution if the input
signa)l waries too fast. To eliminate this problem, a sample
and hold circuit follows the analog input until sample time
and then holds it at that value until after the conwversion
is pertformed. |

The simplest sample and hold wunits are composed of

a capacitor, which charges according to the input signal,

and & switch which disconnects the input from the capacitor
during sample time. Once the input is disconnected, the
converter can read the analog valus from the capacitor as

an essentially constant wvalue. Three factors must be

116

considered in selecting a sample and hold unit:

1: Acqguisition time is the amount of time it takes the

capacitor to charge to the analog voltage

2: Rperture time is the amount of time for the switch

to flip

3: Holding +time 1is the length of time the capacitor
can maintain the wvoltage to within a specified
percentage of its initial value

17

AN EXAMPLE SYSTEM - THE HOUSING GAME

The preceeding chapters have developed the need for
and detailed the implementation of & computer graphics
system to support engineering design. This chapter is
intended to clarify the various aspects of the system and
demonstrate their interrelation and usefulness in the

solution to an example probiem.

The example discussed h

1]

rein is the design of modular
housing. The first reguirement is that input be simple,
following the desigrer’'s inclination to sketch floor plans,
erase, and move walls or rooms arcund at will., The second
requirement is that he be able to wview the resulting design
as a three dimensional, perspective drawing allowing him
to evaluate the house's aesthetic as well as practical
merits.

The three modes of computer usags

Q

wallable as the
e all

result of the timesharing system descel
exploited for this housing design system. Card deck input
t

bed above ar
to the batch system with Tine printer o digital plotter

output provides the slowest design 1 ior time but the

i
M ~+
1]

1
most efficient wuse of computing resour; Card image
generation and pictorial output on a graphic timesharing
syetem terminal (ARD3) improves the iteration time 1o a
matter of minutes. Finally, interaction with & minicomputer
(IMLAC) to sketch the floor plan, instead of coding it on
data cards, allowing the developing floor plan and

perspective drawing to be viewed on its accompanying CRT

118

screen, provides thes easiest but most expsnsive design mode.

R11 three modes of design can be subdivided into three
phases. The first phase allows the user to "sketch" room
outlines starting at a specified (X,¥) origin and then
moving an indicated distance and direction (anglel) for e=ach
wall comprising the room. Once the general outline is
specified, +the second phase allows room features (doors
and windows) to ke added to each wall. Finally, ohservation
information 1s specifisd indicating from what vantage point
the perspective drawing is to be viswed.

In the sections which follow, details of these three
phases ‘are giwven first {for card image input and then for
the sketch system on the IMLRAC. Mext, a description of
the output dewvices avallable (as part of the Device
Independent Plotting Languagel along with pictures of sample
output on each is included. The final section discusses
how the housing design programs utilize the computer
graphics system.

119

ROOM SPECIFICATION

Each data card represents one room with s maximun of
eight walls per room. Column one of the card contains the
room identifier (to later limk it to feature specification)
which must be unicque to each room. Columns three and four
contain the X and five and six the Y coordinates of the
origin of thes room. Colunns eight through seventeen contain
the room name, The rest of the card contains eight, seven
column fields for specifying the angle and length of each
wall. The angle 1is in degress (-390 counterclockwise to
+30 cloclkwise) and is relative to the last wall drawn.

Summarizing:

coL 01: voom indetifier character
03-04%: ¥ origin in fest
f5-06: ¥ origin in feet
08-17: room name
139-21: angle from the +X axis of wall one
23-24: length of wall one in feet
26-28: angle from wall one to wall two

0-31: Tength of wall two in feet

W W

(KA

-76: angles and wall lengths three through eight

Note that input is ordered so0 as to be similar to
sketching a floor plan: identify the room, move the pencll
to its origin, jot down the room name, and trace around
the room. If the last wall specified does not enclose the
room, walls parallel to the X and ¥ awes are automatically
added.

120

FERTURE SPECIFICHTION

Every wall of each room may contain up to four features
{doors and windows]. The first column of the feature
specification card must contain the room identifier which
matches the identifier on the room specification card.
One o six features may be specified per card and multiple

cards may be used to descrihbs features for any room.

As mentioned, the first column of each card contains
the room identifier to whick all features on the card apply.
The remainder of the card is divided into six, ten column
fields. These contain the {eature type (D=door, bW=window),
wall number on which the feature is to be placed, length
along the wall te the beginning of the feature, and featurs

humber. Summarizing:

COoL B1: room identifier
03: feature type one
O4-05: wall number within room
07-08: length in feet along the wall
10-11: feature number

12-€83: features two through s=ix

The features avallakle with size:

]

specified (X,Y in

1

feet) are a= {ollows:

D01 : 0307 door
D02 @ 12x07 door
D03 : 0Bx07 doar
w1t ¢ 03=04% window
Wiz : 06x0Y4Y window
wo3 @ 04x07 window

121

OBSERVATION INFORMATION

Once the floor plan has besn specified, the housing
design program gensrates a three dimsnsional picture
assuming eight foot walls. The floor: of the back left
corrizr is the origin of a three dimensional (right handed)
coordinate system with +X to the right and +Y up. The {loor

plan must be specified so that a1l coordinates are positive.

The wuser may then specify the displacement of the
object, the obssrver location, and the point at which the
observer 1s looking anywhere IiIn three dimensional space.
The uszr must also specify the size of ths plotting area
(XL by YL) and margins around the two dimensional output
surface (LM, RM, TM, and BM corresponding to laft, right,
top, and bottom margins respectively).

In addition to this information, two specification
cards must be included to complete the interface to ths
ganeral three dimensional perspective routine package.

Summarizing:

CHFD 01 : the value 00001

gz i (X,Y,2Z2) abject displacemsnt in 3F10.0 format
03 : {(X,Y,2) observer location in 3F10.0 format
04 : (X,Y,2) observer looking at in 3F10.0 format

os (5L, LM, RM, YL, TM,BM) in BF10.0 format
Ok : F

AM IMTERACTIVE FLOORPLAMN SKETCHPHD

An alternative method of creating floorplan input to
the modular housing system is available as an interactive
sketchpad on .the IMLAC terminal. This stand-alone IMLAC
program accepts coordinate information continuously from
a '"mouse” (graphic input device] moving a tracking cross,
which is calibrated in one foot irncrements, over a fifty-six
by fifty-six foot gridded surface. [The picture is scaled
by one eighth inch equals one foot to it on the IMLAC
screeni.] The warious sketch, move, and select feature
options are activated using a ("five finger") {function
keyboard. Each option is deszcribed below along with the
key option pattern (X's represent down keys) necessary to
initiate it:

KEYS XOOC0: initialize drawing & room
XKKOO0: initialize moving a room
U000 add a feature to a room
KOXO0: store a copy of the floorplan on the disk
HOKDN: retrieve a copy of the floorp]an from disk
RO00X: indicate the completion of voom creation
dHXx00D: send the floorplan to the B500 for plotting
Q000X mark the end of & cursor operation

123

HOUSING SYSTEM GRAPHIC QUTPUT

Regardless of the input.mode (card decks through batch,
card images through tsvminals, or graphic input on a CRT
minicomputer terminall, thres dimensional, perspective
output iz available on several output devices. This occurs
automatically hecause the housing program gensrates input
to the Dewvice Independent Plotting Languags routines, a
portion of this dissertation descri fllly im Rppendix
B. Multiple device output allows design iterations 1o he
rutt an the most corwvenlent device, which may wvary over the
design period, and plot the final solution on a high
resolution graphics unit,.

There are seven graphic output devices availlable
it

e
]

c
The general characteristics and awvallability of each

[
-+

detailed below along with flgures showing each as

produces thres dimensional housing system output.

The most COHVLHIUHT output device for batch mode is,
of course, ths line printer. Its resolution (ten by aix
points per inch) and plotting window (seventeen by eleven
inches) make the perspective output guite vagus for mores
than two or three room f{loor plans. It does, however,
provide some three dimensional feel for the design and
assurance that the observer and object Jocation placeme
are adequate for possible re-plotting on & higher resolution

device. HRn example is shown in Figure 3.

Batch mode may be simulated with generally better
esponse times from an alphanumeric terminal wusing the
timesharing system. Output from the plotting routines can
be formatted to fit on this type of terminal with somewhat
more severe detall restrictions than with line printer
output. FAn example is shown in Figurs 4,

124

Complex house designs regquire substantizally better
perspective output guality than is available on either the
printer or alphanumeric terminals. Faor these, an ARDS
memory-type graphic terminal can be used with 170 points
per inch resolution over a six by eight inch plotting area.
Input from the ARDS 1s wia card images, but the high
resolution output vellds & wvery accurate representation
of the design, ss showsn in Figure 5. H ocombination of
better responss time for terminals (than batch) and the
high communication vate +to the ARDS offered by the
timeshralng system makes uwsing the housing system in this

mode quite efficient.

Finally, designs which are so complicated that a
picture of the f{loor plan is needed for evaluation during
the design process, output 1s avalilable on the IMLAC display
minicomputer terminal. This allows the user to switch hack
and forth between the ocurrent floor plan trial and its
perspective picture an the 120 point per inch, eight by
eight inch CRT. Hn example is shown in Figure 6.

Once the design is finalized, hard copy of the result
can be plotted on & Gould electroszstatic plotter, & Calcomp
drum, or a Calcomp flat bed plotter. The Gould is an eighty
ky eighty point per inch, =leven inch by 100 foot, on-line
device shown in Figure 7. For a better quality final
picture, either Calcomp can be used with their 200 point
per inch resolution as demonstrated in Figure 8 and Figure
9.

125

[
B
!

ter

2 Prin

g

Output on the L

ing

. Example Hous

126

127

U} Computar Displays Inc.

g Output on the ARDS Terminal

5. Example Hous

1N

igure

TN s e e e g e e s i

[P

Figure 6. Example Housing In

put on the IMLAC

i P

Terminal

N

' s o it

Figure 7.

Example Housing Output on the GOULD Flotter

na

v
»
)

—_
[ah]
<

1’ 2t

Figure

8. Example Hqusing'ouiput on the Drum Flotter

kkJ

AR Pl

n the Fl

Figure 9. Example Housing Output

2V

1thed Flott

D

THE IHTERFRCE TO THE COMPUTER GRHAPHICS SYSTEM

Hs indicated above, the intent of this housing design
program 1s to demonstrate the wvarious aspects of the
computer graphics system which comprises this dissertation.
The program will certainly not revolutionize +the field of
architecture. 'It mgst be emphisized, howswver, that is &
limitation of the program [(itself only akout 200 cards)

and not the graphics system 1t utllizes.

The Device Independent Plotting Language 1s clearly
the unifying component of the housing system. It allows
the designer to wuse the most convenient input and output
devices based on avallability, response required, and
picture quality needed. This flexikility also allows
literally hundreds of people to use the program iIn bauch
mode simul taneously or just one to wse the program
interactively with a minicomputer terminal dedicated +to
biirn. Further, since dewvice formatting is transparent to
him, the uéer can switch back and forth, or graduate to

more and more sophisticated devices a

o

his design becomes
more hearly complete.

The timeshraing system capable of supporting high speed
graphic terminals efficiently 1is also an important part
of the housing program. ‘Once a general design iz developed,
perhaps in batch mode, +apld iteration through @ the
visualize-redesign-edit loop i3 necessary +to complete the
assthetic and practical details of the house. The quick
editing capabilities and high speed communication hbetween
the graphics terminals and the central computer provided
by the timesharing systenm minimize the computer-imposed
delay in this design loop. This potentially enhances design
creativity by eliminating ackward editing regquirements and

impatience caused by long plotting times.

such a designer would need

Development of the housing design program was a
relatively easy project reguiring only about three weeks
effort, This was due, however, to the extensive graphlics

and timesharing systems developed previcusly as part @ of

1]

this dissertation. Such systems are not generally

available. The computer course describsd above for an

enginesring designer provides

the baclkground and

(]

»perience
o establish the graphic and

1

t
interactive capabilities perhaps lacking in his computer
facility. Ewern more importantly, the courze provides the
potential computer system designer a knowledge of what can
be dons and the relative complexities of the various system
components. In this way, giwven a problem 1ike modal ar
housing design, an engineesr can detall the various hardware
and soitware components of its computer grapbics solution,
gvaluate thelyr usefulness in that solution to the probklem,

and perhaps overszes the implementation of the design system.

SUMMARY HND COMCLUZSIOMS

The expressed goal @ of +the work descrikbed in this

dissertation is an investigation into means of exploiting

the digital computer as an effective, economical senginesesring

design tool. This involwes thrae phases. First is the
development of a Device Independent Plotting Language

al towing dezigners to communicate with the computer
graphically in two or thres dimensions. Second is the
development of & data concentrator tim=ssharing system

permitting sufficiently high speed communication (up to
50,000 baud) between the computer and remote terminals to

allow graphical and converted

anatog test information to
be transfsrred wlthout design-Timiting delays. Third is
the development of additional coursss iIn the enginesring

curriculum providing engineers an understanding of these

computer tools and enabling them to bulld s=uch tools a

I

they are faced with design problems.

Each of these three phases of irvestigation and

development has proved successful The graphics system
provides a convenient means of expressing images from

FORTRAMN subroutine calls, produces and stores thes images
in an efficient form, and allows them to be plotted on any
of seven output devices. The data concentrator system
provides a 50,000 baud path for up to thirty terminals into
a central computer with minimum overhead on 1ts channels
and processurs; Utilization and implementation details
of computer hardware, programming, and graphic and
timesharing systems proved interesting 1o, and readlly
learned by, engineering students.

135

As is demonstrated in the chapter on the housing design

system, the graphics timesharing system implemented hesrein

can provide an effective hase for engineering design
systems. Per rhaps most important, it can be done
ecoromical 1y. Stati graphics terminals can row e

purchased for S,DDG dollars and dynamic ones for under
15,000 dollars. The percentage (one thirtieth) of the data
concentrator adds about 2,000 dollars peyr terminal. This
concentrator decreases the central computer drain to the
point where only about one CPU minute per two houwrs of
terminal time is uwtilized even at high data rates. This
amounts to the eight to ten dallars per hour connect time

commertially charged for ten character al-To second

=

al phanumeric terminals.

The bhest test of a new tool is how reasdily and
productively it is used, Three current Fh. D.
dissertations within Mechanical Enginesering depend upon
various azpects of this worlk, The first, irveotving a
computer graphlc desizn system for kinematic linkages [24],
relies heavily on the interactive communication provided
by the timesharing system and complementary FORTRAN
interface (described in Rppendix A). A second, involving
the dessign of axially symetric rotating machines {251, also

uses the interactive capabilities of the timeshar

-
{ =]

Finally, & creative

i
o system being invest

furly
o)

< i
undergraduate engineering students [2B8] vrelies heavi

)

the two and three dimensional g'aphlra routines.

It is +the firm conclusion of this work, based on and
detailed throughout the preceseding chapters of this
dissertation, +that low cost - graphic terminals, connscted
to computers through data concentrators, can be used

sffectively and economically 1o ald in engineering desig

n
=S5

processes. Significently nesw approaches to graphic ima

13 ‘!
Fy)

138

representation and manipulation, and data concentrator
specification, as these explolit improved, 1 ower cost
hardware, have led to this conclusion. It vemains now for
these approaches to be conveyed to engineering desigrers
through the undergradusate curriculum and to propragate
through the timesharing comparies who provide: this type

of tool to enginesring firms.

LIST OF REFEREMCES

11

4]

6]

[nm)
-t

LIST OF REFERENCES

Mewport, C.B., HApplications and Implications of Mini-
computers, SJCC Proceedings, 1870, pp. 631-635.,

Sibley, E.H., et. al., The Case for a Generallzed
Prohlem Solwer, 3JCC Proceedings, 1370.

Foley, J.D., Hn Rpproach to the Optimum Design of
Computer Graphic 5Systems, Comnmwnications of the RCHM,-
Juneg, 1371, pp. 380-380.

Hamblen, J.lW., Using Computers in Higher Education: Past
Recomendations, Status, and Needs, Coemunications of
the ACM, PMovember, 1371, pp.T703-712.

Botterill, J.H., et. al;, A General Display Terminal
System, 5JCC Proceedings, 1371, pp. 103-111.

Tymes, L., TYMMET - A Terminal Oriented Communications

Metwork, SJCC Proceedings, 1371, pp. 211-216.

Coates, c.L., et. al., HAn Undergraduate Computer
Engineering Option for Electrical Engineering,
Proceedings of the IEEE, June, 1371, pp. B854-860.

Trier, F.E., Computer Hided Design 1in Electronics,
Proceedings of The Institute of Electrical Enginsers,
vol. 119, pp. 1-16.

8] Wilkes, J.0., et. al., Introduction to Digital Computing
and FORTRAN IV with MTS Applications, The University
of Michigan, 1968.

10]Modular Computing Systems, Reference Marnwual MODCOMP III
Computer, February, 1971.

11]1Knuth, D.E., The Art of Computer Programming, WVolumn
1, Fundemental Algorithms, 1368.

12]1Sutherland, I.E., Sketchpad: A Man-Machine Graphical

Communication Swstem, SJCC Proceesdings, 1963.
13]Toffler, A., Future Shock, 1370.

14]Boardman, T.L., A device Independent Flotting Language,
Masters Thesis, Purdus University, 1971,

15]Garrett, R.E., et. al., Preliminary Development of
Purduz's Remote Interactive Design System (FRIDES),
Purdue University, June, 1370.

16]1Boardman, T.L., In Teaching Design, It"'s Who and How
That Really Counts, HSME Arnual Meeting, Junes, 1971.

17]Knight, K.E., A Study of Technological Incwation, The
Evolution of Digital Computers, FPh. D. Thesis, Carnegie
Mellon University, 19B3.

18]Knight, K.E., Changes in Computer Performance,
Datamation, wol. 12, no. 9. '

191Knight, K.E., Evolving Computer Performance, Datamation,
vol. 14, ro. 1.

20IMills, D.L., Topics in Communication Systems, The
Urniversity of Michigan, Technical Report 20, CONCOMP,
MAY, 19B9.

21iMills, D.L., The Data Concentrator, The University of
Michigan, Technical Report 8, May, 1968.

22]Wehr1i, R., et. al., ARCAID, The ARCitect's computer
graphics HID, University of Utah, Juns, 1370.

23]Garrett, R.E., et. al., Preferred Typs B Proposal for
Development of a Computer Rided Design, Estimating, and
Scheduling System, Pantek Corporation Proposzal to the
Department of Houszing and Urban Development, 1370.

24}Resd, W.S., The Synthesis of Kinematic Metworks through
Man-Machine Interaction, Ph. D. Thesis, FPurdus
University, 1373.

28]Palmer, John L., Design Education Stimulation by
Interactive Graphic MNotation - DESIGN, FPh. D. thesis,
Purdus University, 1373,

26]Gunn, Moira A., On the Development of Computer Graphic
Design Tools for the Enhancemant of Creativity, Fh. D.
Thesis, Purdue University, 1374,

HFFENDICES

140

APPENDIX A- INTERACTIVE COMMUNICATION FACKAGE

BINAFP is a subroutine package which allows remote
terminals and minicomputers to communicate with interactive
FORTRAM programs executing in the CDC E6500. Two modes of
communication are provided: binary for transfer of core
images between the 6500 and minicomputers, and coded for
user input of data and program output of text information.
The subroutines which support these modes arse described
hevrein.

In order to decresase the effect of interactive jobs
on the 6500 operating system, the maximum field length
permitted for such jobs is 20000 words (octall. R job may,
however, compile at a larger field length priov to
execution.

EINAP automatically handles requesting the terminal
from which the job was submitted when the first input-output
operation 1s performed. Rfter that, the program is rolled
out of 6500 memory whenever it is waiting for input to
minimize the drain on system resources. When input is
complete or the attention character (CTL-B} is sensed, the

program is volled into memory to continue executing.

The following control card sequence is sufficient to
access the subroutine package and exescute 1t with a FORTRAM

prograni:

141

JOB CRRD
FUN (S3
PFILES (GET, IMTACT, X=LGO,A=154 74, N=IMLFTN)
LGO.
EXIT.
TRMCLER (TRMFIL)
1/8/83 (rul ti-punch)
FORTRAM PROGRMAM
6/7/8/9 [(multi-punch)

142

Inputting Binary Data

Purpose

To ‘provide for reading sixteen bit words from a remote
minicomputer into the low order sixteen bits of CDC
6500 words. Sign extension and two's complement
translation are optionally performed so that the

numeric values in both computers are identical.
Usage
CALL BRERD (IARRARY, COUNT, CVT, MODE, PROMPT)

Description of parameters

IARRAY : the 6500 integer array containing at least
COUNT words into which the data is
read

COUNT : the number of sixtesn bit words which are
read

CVT : if specified e, two's compl ement
translation 1is performed with sign
extension

MODE : if specified 10B, input is terminated with
less than, COUNT words read 1f a
carriage return (ASCII walus 015}
is entered

FROMPT : if specified norn-nsgative, its value is

transmitted to the minicomputer

foliowead by COUNT split into two
characters '

Remarks

If PROMPT is not specified, MODE must he 10B since
COUNT is not used to terminats input.

Example

DIMEMSICON IBUFF (75)
CALL. BREAD (IBUFF,75,1,0,37E)

The 6500 first transmits B27-000-113 to the
minicomputer (the prompt followed by the word count
in twn characters) and then enables input. The
subroutine is exited when seventy-five words have been
read into array IBUFF, converted from two's complement

to one's complement with sign extension.

14y

Quiputting Binary Data

Purpose
To provide for writing the Jow order sixteen bits of
chC 6500 woards to remote minicomputers. One's
complement translation is optionally performed so that
the numeric wvalues 1in koth machines are ldentical.
Usage
CALL BWRITE (IARRAY,COUNT,CVT, MODE, FROMPT)

Description of parameters

IARRAY

the B500 srray from which data is written

to the minicomputer

COUNT

the number of sixteen bit words which are

written to the minicomputer

CuT : if specified ore, one’s compl ement
translation 1is performed. Ths uppey
forty-four bits of the EB500 words

are ignored,

MODE :+ if specified one, no end of line sequence
is =ent between ten word blocks.
If zero, a car?iaga return, line
feed (ASCII value 01

=)
before each ten s3ix

=012} is sent

tezrn bit words.

PROMPT : 1f specified non-negative, its walues is
t

ranzmitted ta the minicomputer

145

followed by the complement of COUNT
split . into two characters. The
rautine then waits for an acknowledge
character (ASCII walue 008) before

the write operation is performed.
Remarks

If PROMPT 1is not specified, the write operation takes
place without comfirmation from the minicomputer that

it can accept the data.

If CWYT 1is specified ons, the prompt count is also

corverted to two's complement.
Example

DIMEMNSIGN IQRRBY(47)
CALL BURITE(IARRAY,47.1,1,378)

The 6500 first transmits the PROMFT and complemented
COUNT (037-377~321) to the minicomputer. It then waits
tor an acknowledge response. Finally, it writes forty-

saven sixteen bit words to the minicomputer.

146

Inputting Coded Data

Purpose

To provide for veading one ltine of characters into
a CDC 6500 array with automatic conwversion from RASCII

to display code.

Usage

CALL CREAD (IARRRAY, COUNT, RUE, MODE , PROMFT)

Description of parameters

IARRAY : the eilght element integer array into which
the characters are packed in
Hollerith format, ten characters

per word,

COUNT : the maximum number of characters in the
line fless than eighty-onel). A
carriagze retuwrn (ASCII walus 015)
always terminates the lins.

RUB : set non~zero if the rubout character (RSCIIL
value= 377) is entered -anywhere in
the line. The other characters in
the line are not converted into the
buffer,

MODE : if specified non-zesro, three special

character sequences are processed
as follows:

147

H#5 - execute & Aprogram stop
immediately

#A - abort the program immediately

#EO0F - return MODE zero indicating
an end of file condition

PROMPT : the left justified value of a two display
code character FPROMPT which is s=nt
to the terminal before input is
enabled.

Remarks

The characters are packed into the display code buffer
in the format expected by the FORTRFM DECODE statement.
This facilitates direct wuser input of floating point
numbers into their correct B500 internal representation

for computation.
Example

DIMEMSION IBUF (8)
RUB = 0 '
CALL CREAD(IBUF,10,RURB, D, 1H?)
IF (RUR.NE.G) GO TO 399
DECODE 10,20,IBUF) X

20 FORMAT (F10.3)

The 6500 first prompts the user by writing a 7 to
the terminal and then accepts up to nine characters
followed by a carriage return or ten characters, If
the rubout is not in the input' string, the program

converts the characters according to F10.3 format.

148

Outputting Coded Data

Purpose

To provide for writing one line of characters f{rom
a 6500 array to a terminal with corvversion from display
code to HSTII.

Usage
CALL. CWRITE {(IARRAY, COUNT,BLANKS, MODE, SHIFT)
Description of parameters

IARRAY i the integer wvariable or array of characters
in Hollerith format, ten per word,
which are converted to HSCII and

sent to the terminal,

COUNT : the number of characters in the 1ine (less
tharn eighty-cne) to be sent to the
terminzl. A zero byte (display code
terminator) ends the line regardless

of the count specified.

BLANKS : the number of klank characters (AZCII wvalue
040) which are added after the lYast
non-blank character of the line.
Trailing blanks are normal 1y
truncated.

MODE : unless specified one, a carriage return,
line feed (ASCII wvalue 015-012) is
sent to the terminal preceding the
tine. '

149

SHIFT : ¥f specified non-negative, +the GSHIFT OUT .
character (ASCII walue 018) is sent
to the terminal preceding the line.
If negative, the SHIFT IN character
(ASCII walue 017) is sent preceeding
the line. Otherwise, no prabeder
iz added to the line.

Remarks

The SHIFT IM / SHIFT OUT option may be used for split
screen operation so that the executing BLA0 program
can specify which portion of the screen it chooses
to fi11. This option may also be used as a mode switch
to control the exscution of a program in a mini-
computer. By setting COUNT equal to zero, only the
SHIFT character is sent to the fterminal.

The FORTRAM EMCODE routine may ke used to fill TARRAY
with numeric aor text data from a standard format

statement.
Examples

DIMEMSION IBUF(8)
EMCODE (15,10, IBUF}

10 FORMAT (15HRESDY FOR INPUT)
CALL CURITE(IBUF,15,0,0,0)

The E500 sends the message READY FOR INPUT {15
characters) to the termina] preceded by &5 carriage

return, line feed,

150

R o= 12.345

ENCODE(18,100,IBUF) X
100 FORMAT (5%, 3HA= ,F10.3)

CALL CWRITE(IBUF,18,2,1,1)

The €500 sends the message” X= 12.345 " (20 characters)

]

to the terminal preceded by the SHIFT OUT character
but no carriage return, Tine feed and followsd by two
klanks as shown.

Releasing the Terminal

Purpose

151

To release the terminal or minicomputer from the G500

program to which it has besn assigned.

Usage

CALL TRMCLER

Remarks

This routine must be called after all interaction

is

completed so that the terminal is available for use

by other programs. Since job termination does

ot

automatically release the terminal, TRMCLER is also

available as a control card armd should ke used

follows in all interactive programs.

JOB CARD

%

%

X

EXIT.

TRMCLER (TRMFIL)
$EOR.

a5

152

Interrupt Processing‘

Purpose

To provide control owver an executing program by
allowing the wuser to specify the location in bis
program to which the O©CPUJ will ke diverted when the

attention character is entered from the terminal.
Usage
CALL TRMCTL (rinnnnS, IPKG)
Description of parameters
nnntnS ! nnnnn iz the FORTRAN statement number
(followed by an S as shown) to which

the CRU is diwverted when an attention
character is entersd at the terminal.

IPKG : a twenty-five -element wuser defined array
which contains the exchangs package
at interrupt.

Remarks

The CPU will bes diverted at any point except during
a binary read operatiorn (EREAD). In that case, the
attention character (ASCII wvalue 002) is treated as .

normal data.

This routine must be called before esach interrupt 1
senserd. If it is neot called , the attention character

results in the program heing aborted.

153

Example

DIMENSION IPKG(25) "
100 CALL TRMCTL (1005, IFKG)

When the attention character is recelved the CPU 1is
~diverted to statement 100 and the interrupt iImmediately

re—enabléd.

e

154

Sample Program

--- JOB CARD ---

FUN, S. | |

PFILES,GET, INTACT, X=LGO, M=IMF TN, =154 74,

LGO.

EXIT.

TRMCLER (TRMFIL)

#EOR

PROGRAM TEST (OUTPUT=1, TAPES=0UTFUT)

DIMENSION MSG(8),ICORE(20), IXKXF (25)
SAMPLE PROGRAM TO DEMONSTRATE BINAP

DIVERT CFU TO STRTEMENT 1 OM RTTENTION

OO0 0

1 CRLL TRMCTL (15, IXXP)

C
i WRITE READY MESSRGE TO TERMINAL
C

100 EMCODE(17,10,M3G)

10 FORMAT (1TH RERDY FOR INPUT)

CALL CURITE(MSS,17,0,0,0)

C
C READ IMDEX TO JUMP THBLE
Cc

150 RUB = 0
CALL CREAD(MSG,1,RUB, 1, THZ)
IF(RUB.NE.O) GO TC 100
DECOCE (1, 20,M3G) INDEX
20 FORMAT (I1) ,
IF (INDERX.LT.1.0R. INDEX.GT. 4} GO TO 500
GO TO (200, 300, 4QO0, §00), INDEX

O 00

QOO0

O OO

21

400

S00
17

155

READ IM X .. SQUARE IT ... AND WRITE

ENCODE (11,11, M““J

RUB = 0O

FORMAT (11H WHAT IS %X)
CALL CWRITE(MSG,11,0,0,0)
CALL CRERD(MSG,10,RUB,1,1H:)
IF(RUB.NE.D) GO TO 200
DECODE(10,21,MSG) X
FORMAT (F10.0)

¥ o= D

ENCODE (20,12,M5G) X
FORMAT (5%, SHX**2=_F10.3)
CALL CURITE(MSG,20,0,0,0)
GO TO 100

RERD 10 WORDS IM BINARY MODE .. PRIMT

CALL BREAD(ICORE,10,1,0,378)
EMCODE (70, 15,MSG) ICORE
FORMAT (1007) |

CALL CWRITE (MSG,70,0,0,0)

GO TO 100"

WRITE ICORE (10 WORDS) BRCK

CALL BURITE(ICCRE,10,1,0,37B)
GO TC 100

WRITE IMDEX OUT OF RAMNGE MESSRGE
EMCODE (21,17,M3G) INMNDEX

FORMAT (3HBAD IMPUT, I2,1X, 9HTRY AGAIN)
CALL CURITE(MSG,21,0,0,0)

O

600
18

GO TO 150

URITE TERMIMATE MESSHGE .

EMCODE (4, 18, MSG)

FORMAT (*STOP*)

CALL CWRITE(MSG,4,0,0,0)
CALL TRMCLER

STOP

=)

RELEARSE

156

157

APPEMDIX B- DEVICE INDEPENDENT PLOTTING LAMSURGE

Introduction

The intent of this manual is to give the Post-Processor

writer and the interested student an accurate and

0

detailed description of OIPL in the usage of its
plotting routines, in the format of its data, a
its particul ar conventions. Complete test data and
its resul tant plots will ke provided to. a

standardized output from all DBIFL post-processor

58

General File Structure

The DIPL plotting routines generate a data file which
describes the piot. The Post-Frocessor reads this
file and produces 1its plot on the particular output
device the Fost-Proceszor was written for. The DIFL
file hegins with the version identification and = T6
word table of plotting constants followed by different
opcodes and data which describke the plot. Its general
format is:

YERSTON 76 WORDS OF FIRST | ASSOCTATED | SECOMD TERMINHTE
IDEMT | FLOTTING COMSTANTS OPCODE OATH AFCOOE © | FLOT OFCODE

i

-

158

The first word of the file contains the date that this
plot file was created in the form LMM/DD/YY. The

following 76 sixty-bit words define the plotting

constants table. This +table describes @ field bit
lengths, opcode values and file information among other
data. Each element is listed in Table 1 in Fppendix,
The rest of the plot file is treated as a bit stream,
indepsndent of words ar zectors. This stream 1is
divided into fields having bit lengths defined in the
plotting constants takle (THBLE, for convenliencel.
Each opcode has a unique group of fields whickh follow
it. At any point in the file, the walue of any
constant in TRBLE, e.g., the number of bits in any
field, may ke changed, and this change will apply to
all further references to it.

There are two general forms for an opcode and 1ts
associated data. Since the Post-Processors are tahkle
driven, the field widths of wvarious fields in DIPL
can ke found in TRELE, e.g., a field widih of "+7"
indicates that the number of hits in the field width
is inm TABLE+T. Any width not preceded by a plus(+)
indicates an absolute bit count.

Record Tvpe 1:

H3ZOCTATED

OFCODE | oo Frelos

FIELD WIDTH +7 _—

169

Record Tvype 2:

COMPLEMENT ' B3S0CIATED
o opcone | OFTMOPIRIER) narn FreLos
FIELD WIDTH +7 +8 -

The negative opcode indicates the existence of an op-
modifier. Currently, this holds the page number for
the PHGE opcode and the value of INFO for the RAXIS

opcode and is always an integer. Table 4 contains

all the ,current opcode formats, while particul ar
formats follow the description of each plotting
routine.

DIPL, & device indepsndent plotting language, provides
the user with the facility of multi-media plotting.
Useful plots may be permanently stored in a minimum
of space, called a DIFL file. Bt any time, plots may
be generated from such a file on any number of output
devices using diffsrent "Post-Processor” programs.
Past-Processors currently exist for the IMLAC, the
GOULD 4800 electrostatic printer, . the line printer
and the teletvpe. Since the line printer and the
teletype are T ow resolution devices, +the plots
generated here may be low guality; howsver, these are
the most available devices and would be the fastest
way, of debugging the general plot. The GOULD offers
high resoclution and hard copy of user plots, while
Each Post-

s dus to the

the IMLAC can provide wisual displas

S
Processor has particular charactsristi

g

nature of its specific output device and the status
of its development. These are indicated in the section

lahelled Post-Frocessor Usags,

e

160

The user gensrates a DIPL plot file through a series
of FORTRAN subroutine calls +to the DIPL plotting
package. The calling procedure is described in DIPL
Flotting Routines. This plot file may be stored

permanently and post-processed later, or it may be
directly passed +to a Post-Processor. Facilities have
bzen made to allow CRALCOMP ussrs to plot on the GOULD
without recompilation of their programs. Sample deck
setups appear in DIPL Plot File Generation.

Each DIPL file contains a table of plotting constants

which indicates the conventions for the particular

plot. When a plot is requested, this table 1s vead

into memory before any actual plotting takes place.

Following this on the DIFPL file 1is the serie
1

plotting commands generated by the plot calls in the

user' s program. These commands may include requests
to change wvalues in the plotting constants table.
Since these changes may occur at any time, the tahble
is referred to befores each plotting command is plotted.
Changes might be requested to better utilize the
features of the ultimate output device the user has
in mind or to improve the appesrance of part or all
of an individual plot, The table will be altered
directly or Iindirectly depending on the particular
DIPL subroutines which are called. Only those changes
which are applicable to the general user will be

discussed,

161

Basic Plotting Conventions

#A11 plotting must be preceded by a call to subroutine
PLOTS. This 1initializes the DIPL file generation
procedurea.

eThe cursor and thes relative origin is set to (0.,0.).

8The "window size" or the plotting boundaries are
initially set to 10."x10."

eThere exists primary and secondary scale factors such
that all coordinates and symbol heights are multiplied
by both to achiesve the actual plotting value. Both
are initially 1.0 and will only he altered by thes user.

b

12, THELE, contains values
aling factors, field bit

®The plotting constants ta
for the window size |, sc
lengths, resolutions, etc. The takile may be altered
at any time during the DIFL file generation procedure

using the CHANGE subroutine.

ﬁPlbtting is terminated by
CALL PLOT(0,0,393)

162

Basic Post-Processor Conventions

oAl DIRPL PFost-Processaors must be writtern in COMPASS
for the CDC &500.

eSome generalized routines are supplied +to facilitate
in

the Post-Processor writer. These are described in

the section labelled Usefyl COMPASS Subroutines.

oHl1 field bit lengths must never be assumed, but
should be obtained from TRABLE, e.g., the symbol angle
bit length resides in THELE+13. There are few
exceptions +to this rule, and they are clearly marked

in the DIPL record formats.

oThe address of the subtables in THELE which describe
dimension bit length, resolution, window size and
relative origin must be obtained fom
TRELE+1, ..., THBLE+Y, These subtables should not be
accessed by their apparent position in Tabkle 1.

85ince entries in the constants table THBLE could wary

during the execution of & program, care should be taks

3

to make the FPost-Processor gsneral enough so that eact

wd

time it decodes a field in the DIPL file, it ref

i
=
£

to TABLE to find out the current {field width, e.gz.,
Example 1 : In order to find out the current
rumber of plotting dimensions, the entry TABELE+3
should be referred to each time the rumber of
plotting dimensions 1Is needed. This insures fthat
the corvect number of dimension valuss will he
extracted, and additional coordinat&é. which your
Post-Processor does ot normally handle are
- flushed. |

163

Example 2 : Consider the following seguence.

CALL SYMBOL (X,Y,HT, 1HB, ANGLE, NS)
CALL CHAMGE (14,8)
CALL SYMEOL (X1,Y1,HT1, 1HE, ANGLET , N5)

Before the subroutine CHANGE is called the "MNS"
field in the DIPL file is wuswually 7 bits wids.
RAfter the call to CHAMNGE this field width changes
to 8 bits, and subisequent opcodes use this new
field width. A refersnce to TRBEBLE+1Y4 {for sach

NS field avolds &ll possible errors.

oThe primary and sscondary scale factors (5F1 and SF2)
are generally uwssd by the DIFL plotting routines;
howsver, the actual length of an axis must ke computed

u
by the Post-Processor, LEMGTH=SIZE*SF1*SF2.

eFour param=zters may have appeared on the DIPL card:
P1, P2, P3 and P4. They have no special restriction
and -may be wused by the Post-Processor uwriter to
facititate processing. They reside in
THBLE+22,...,TRELE+25S.

of] though vou may be writing a post-processcr for only
a 2-D device (x and y coordinates only), 1t 1is
important that vou read th? section on multi-
dimensional plotting since some of these opcocodes must

be specially handled by 2-D processﬁra.

eThe walue of a coordinate in DIPL i1s an intsger which
must he packed and normalized to corwert it to a real
number. This number must then be divided by the real-
valued resa]ution in the dimenzion of the particular

coordinate, T obtain the actual wvalus, This

o,

164

resolution may be found in the dimension resolution
subtable in TRBLE.

sThe symbol height comes in as an integer, and 1t must
be packed and normalized to convert this to & real
number., This must then be divided by th= symbol helght
increment (TABLE+11) to obtain the actual, ' real-valued

symbol height.

e#The symbol angle 1s read in as an integer and must
be treated similarliy to the symbol height. It rmust
be divided by the symbol angle increment (TRELE+10)

to get the actual, real-valued symbol angls.

oH1l symbols stored on a DIFL {file arse RSCII wvalues,
The CDC E500-ASCII =quivalences may be found in Table
2.

165

DIPL Plotting Routines

SUBROUTINE AXIS

Purpose

To plot an axis starting at (Coordl,...,CoordN)
relative to the current origin and extending SIZE
inches. Numerically labelled ticlk marks with initial
value RAMIN are placed at 1 inch intervals with an

increment of AX. Bn axis label is also written.

Usage

CALL AXIS(Coordl,...,CoordN,STG,NMNS,SIZE,Anglet, ...,
* RArgl eM-1,AMIN, AX, IMNFO)

Description of Parameters:
Coord 1 (1=igN) : coovdinate wvalue in the i-th
dimersion indicating the =tart of

the axis.

5TG : symbol string denoting axis labsl. It
must be in Hollerith form and may
be either & literal symbol string,
i.e., BHX-BXIS, or a wvariable or
array packed 10 characters psr word,
left-justified, This hol ds true
for all symbol stririgs in the
plotting routines.

NS : number of symbols in the axis label.

MS>0the numeric labels will be printed
on the counter-clockwise side of
the axis.

M5<0 ...on the clockwise side.

SIzZE : length of axis in inches; this should be
a whole numbsr. The actual length,
in the plot will be SIZE*SF1*5SF2
which are the primary and secondary

scale factors.

Angle 1 (15i<N-1) : the angle in degress at which

the axis will ke plotted.

AMIN : initial wvalue for the numeric tick marks.
HX : increment for the numeric ticl marks.
IMFO 1 the number of guadrant rotations so that

the actual angle of the numeric tick
marks will be INFO¥30.+Anglel. IMFOD
is wsually 00 for the abscissa and

-1 for the ordinate.

Since the axis label and the numeric tick marks requirs
space to print, the user should position the axis

accordingly or reset the origin to allow for this.

167

DIPL Format TABLE positions preceded hy plus(+) signs;

otherwise, the ahsolute bit count 1is
indicated:
COMPLEMEMTED . , .
AX1S OPCODE INFO | SIZE | AMIN [AX | COORD ;T COORD N
+7 +3 B0 &0 60 +f+11 --= 414704 -]
- M l" N P ‘:: ALy T —_—— [mg)
HGY | ANGLE] ANGLE N-1 NS |-SYHMBEOL] SYMEOL NS
+]12 +13 -—- +13 +14 +15 --- +15
Remaiks
In the subroutine ecall the angles must be real;

howaver, they will appsar in the DIFL file as integers.

The values of the tick mark labels are computed as
AMIN, RAMIN+AX, AMIN+2*AX, ... for SIZE+1 tick marks.

HGT is currently being assigned by the HXIS subroutine.
In the data file, HGT=IFIX(100*0.1)=10, - (integer),
so that the symbols in the AKIS label are & tenth of
an inch high.

It . is +the responsibility of the FPost-Processor writer
to scale the size, SIZE, of the axis to SIZE*SF1*5F2.

168

SUBRCUTINE CHAMGE

Purpose

To allow the user to replace any element of the
plotting constants table, THELE. Only those changes
which concern the rnormal user are listed here.
Usage
CALL CHAMNGE (MOELT, MNEWWAL.)
Description of Parameters

MOELT : the elsment number in THELE.

NEWWVHL ! new 60~-bit value to be placed in
TRELE+MOELT.

DIPL Format

CHANGE T
OPCODE MUELT ME WYAL
+7 +3 60

Remarks

The CHAMGE opcode should be handled by ths COMPASS
subroutine CHANGER. (See the section labelled Useful
COMPASS Subroutines.) '

N

SUBROUTINE FRCTOR

Purpose

To change the primary and secondary scale factors for
subsequent coordinates and symbol heights.

Usage
CALL FRACTOR(SF)
Description of Parameters

SF : scale factor.
SF>0 the primary scale factor (S5F1) is
set to SF.
SF<0 the secondary scale factor (5F2)

is zet to -&F.
DIPL Format
A call to FRCTOR generates a CHRAMGE cpcbda.
Remarks

ANl coordinates (Coordi,...,CoordN) are scaled +to
(Coordi*SF1*#5F2,...,CoordN*SF1#5F2) before entry in
the DIPL file. SF1 and SF2 are initially set to 1.0.
Since this is performed during DIPL file creation,
the Post-Processor doss not scale either coordinates
or symbol heights.

170

SUBROUTINE LINE

Purpose

To plot (NP-1) wvectors from the coordinate arrays,
Arrayl, ..., HArrayM 1in increments of K. These may
be plotted with or without on-center symbols. The

vectors may be blanked or solid.
Usage
CALL LINE(Rrrayl,...,RArrayl,MP,K,J,0C, INFO)
Description of Parameters

Array i (1<i<EN) : array of NP coordinates to he
plotted along the i-th dimension.
The minimun wvalus of the array nust
be stored in location MP*K+1 of RArray
i, and the increment per inch must
bz stored in location (NP+1)*K+1.
The data arvays must be dimensionsd
at least (N+1]*K+1.

MP -1 number of points in the data arrays or
the number of wectors - 1 to be
drawn.

MP<D OCis an array containing MP on-
center symbols.
MNP>0 OC is a wariable containing 1

orn-center symbol.

K : specifies that the MNP points are stored
in the 1st, K+lst,..., (N-1)*K+1st

171

positions of the arrays RArrayl, ...,
Arrayl.

J : indicates that the on-center symbol is
to he plotted every Jth point along

the line.

J=0 plot =solid wectors with no on-center
symbol s.

J<0 plot blanked wvectors with on-center
symbols drawn - at positions 1, J+1,

J>0 plot solid wectors with chn-center
symbols drawn at positions 1, J+1,

oC : either 1) an integer wvariable containing
an on-center symbol. or 2) an array
containing MNP on-center symbols

depending on the sign of NP,

INFO : has no definition 1in the current system

and should be omitted.

Ar on-center symbol may be any character in Hollerith
format or an integer representing the index into the
CALCOMP On-Certer Symbal Table. (Table 3.)

172

DIPL Faormat

1.) NP-1 vectors to be plotted with the same on-center

symbnl plaotted every Jth point. (NP is negative.)

LTNE
OPCDE

-HP

00k
COARD 11

COoarRC N1

H5T

AMGLE |

+7

+3

+1 411

+f 47 14N -1

+1d

+13

ANGLE b

-1

SYMBEO

A S

L

COORD

1.2

COBRD

NeH

2.)

+13

WNP-1 vectors to bs plotted with

center symbal

+14

¥15

-l-f-l-]] [}

L=

plotted every Jth point.

147344 -]

different

LINE

OFCODE HF

COORD R

CODRO

N.J

AMGLE |

+8 38+ -

+1

47144 -]

+12

, SYMBOL
COORD 1.0.

COonR
2%]+1 'Uf 0

1 r 2",_‘-‘-]

1 41 14N-] +15

+f+11

+13

1co

oA W, HF

SYMBOL
I.0.

4

+1 714N -1

173

3.) NP-1 wectors to be plotted with no on-center
symbols. (J=0)

LTNE J
-t —— ; -
OPCODE P (=01 COQRD 11 CO0RD N1 E‘DEIF?.DI.2
+7 45 +3 +f+11 SV 1 (A I W s S s B -
T | COORE
Remarks S S RS

If J=0 then no on-center symbols are te ke plotted.

Although J and NP have kit length of the op-modifier,
they are not op-modifiers.

If NP is positive in the call, it will ke negative
in the file. If it is negative in the call, MNP will

be positive in the file.

HGT is the symbol .height and is assigned by the LINE
subroutine. As in the RXIS sdbroutine, HGT=10 so that
the symbols are intendesd to be a tenth of an inch high.

PS will either be +1 or -1,
No=+1 Symbol I.D. is the ASCII equivalent
‘ of the on-center symbol. |
NS=-1 . Symhbol I.D. is the index into the
on-center symiol table for the
CRLCOMP (Takle 3).

If INFO is specified, the opcode will he complemented,
and INFO will be placed in the op-modifier field.

174

SUBROUTINE NUMBER

Purpose

To plot a number as a string of symbol using a
standard FORTRAM FORMRT statesment. Messages may also
" be plotted with each number.

Usage

CALL MNUMBER (Coordl,...,CoordM,HGT,Anglel, ..
* AngleN-1,FORMAT, INFO)

Description of Parameters
Coord i (1€i€N) : coordinate in i-th dimension far
the center of the first character

in the number-symbol string.

HGT : height of a symbol(digit}; should he at
Teast .07 inch.

Angle 1 (1£igM-1) @ angle bestween i-th and (i+1)st

dimerision.

FORMAT symbol string containing FORTRAN FORMAT

'statement: This may be in one of

2 forms:

(1) literal swmbol string,i.e.,
T10H3Hx= ,F3.2 for which a 12
character symbal string is
plotted.

or(2) wvariable or array packed 10

characters / word in Heollerith
format.

175

INFO ¢ has no d definition in the present system
‘ and should ke omitted.

DIPL Format

The value of the number is inserted properly into the
FORMAT string and placed 1in the DIPL file using the
SYMBOL opcode and format, e.g., the number 1.25 with
format specification 4h{3.1 will be plotted as symbols
1, . and 2,

Remariks

If IMFO 1is presént, the SYMBOL opcaode will be
complemented, and INFO will be placed in the op-
modifier field.

176

SUBROUTINE PRGE

Purpose

To prepare a new page for plotting and insert title
and/or page nunber where requested.

Usage

CHLL PRAGE (MNO,NS,STG)
Description of Parameters

MO : MO0 page number to be plotted.
NO=0 no page number.
NO=0 automatic page numbering requested
i the actual page number 1s

used,

NS : NS>0 rnumber of symbols in title.
N5=0 no title to ke plotted.
STG : title in Hollerith form.

Upon execution of PAGE the primary scale factor (GF1)
is reset to 1.0, and the relative origins are reset
te (0.0,...,0.0).

. DIPL Format

' 1.) Page number and title to ke plotted.

COMPLEMENTED

&7

5 | S ~-- | SYMBOL | .
FRGE OFCODE FAGEND | NS { MBAL] STHEQ b5
+7 B+l +15 --- +15
2.) Page number only.
hY
COMFLEMENTED M3
FAGEND -
PAGE OPCODE | °o'0 | (D)
+7 B 1y
3.) Title only.
COMPLEMENTED | FRGEND
NS | Sy - | sYME
PAGE OPCODE | (=01 | "> | STHMBOL STHEOL 14
+7 T S [Tt | S — 415
~4.) Paging only. PRGE
OPCOOE

177

178

Remarks

The title and/or page number should be centered at

the top of the page, e.g.,

PHGE 4. THIS IS THE TITLE

Q
3

THIS IS THE TITLE
ar
PRAGE 4.

1739

SUBROUTINE PLOT

Purpose

To plot & wector from the last plotted position to
the position indicated relative to ths current origin.
R solid, blanked or dotted wvector or a single point
may be drawn, and the wuser relative origin may be
changed., PLOT also provides for the termination of
all graphic output.

CALL. PLOT (Coordl,...,Coordh, L)
Description of Parameters
Coord 1 (1£iZM) : coordinate wvalue along the i-th
dimension to which +the plot 1is to

be drawun.

I ! type of wvector to ke drawn.

|+
—

draw the same type of wvector last
drawn by PLOT

solid wector

bl anked vector

dottead vector

[+ [+ |+ |+
noE W N

single point

+9990r+14 completes all graphic output and
the plotting terminated switch
1s set.’

180

~999%0r+8 stop plotting for operator

action.

I>0 the wuser relative origin remains
the same. ‘

I<B thes vector is drawn as indicated,
and the user relative origin
is changed to this e

locatian.

DIPL.Furmat

1.) Single wvector caused by a single call to PLOT.

FLOT 3
OPCODE CO0RD S Tk COoRD N
+7 RSN T S My

2.) M vectors of the same type caused by & solid,
blanked, or dotted wvector or a single point call
followed by M-1 consecutive calls to PLOT with the
same type of wvector indicated.

PLOT)
- | CDOR -
gecope | CPORD COORD 14 4
*7 (41 {41 N
SHME o COORD 3
““lopcoce [CP0F0 g2 | | EO0RD L ralL 1es
o7 #0411 mee el a] 1N ala)

181

3.) Pause for Operator Action caused by a call to FLOT
with I=- 383%

PAUSE _
OPC-0DE COORD y |0 CO0RD N
+7 w41 . S I Y Y

Remarks

There are 4 different PLOT opcodes - solid wvector,

blanked vector, dotted vector and single point.

In most cases, a Pause for Operator Action opcode

should be ignored.

182

SUBROUTINMNE PL.OTS

Purpose

To set the plotting started switch which is tested

by all oiher routines to indicate that DIFL plotting

has begun.

THIS SUBROUTIME MUST BE EXECUTED BEFORE HAMY OTHER
GRAPHIC SUBROUTINES ARE CHLLED.

Usage

CALL PLOTS

DIFL Format

VERSTON 76 WORDS OF
TOENT FLOTTING COWNSTRNTS

&0 60 - - - - - B0

Remarks

PLOTS initializes. the plotting constants table, TRELE,
and writes it out on the DIFL file, ‘ |

TABLE should be read into the post-processor program
with the COMPRSS subroutine, INITPP.

(5ee the section
labelled Useful COMPASS Subroutines).

183

SUBROUTINE SCARLE

Purpose

To fit data points from a single arvay to a restricted
size graph. »

U;age
CRLL SCHLE(HRRQY,HLEN@TH,N,K)
Description of Parameter;*
ARRAY - array of data points.

ALEMGTH r number of inches into wﬁich the data must
fit.

M : the abhsolute value‘ of N is the number

of data points to be considered.

M=0. the minimum and the i1ncrement are
integers.

N<0 the minimum and the increment are real.

K : indicates scaling consideration of only
=]

very Kth point in the array.

The minimum data wvalue is returned to the [(NHK) +1
element of ARRAY, and the increment to the [(M+1)*K) +1
element of HRERAY. This is usz=ful when plotting with
subroutine LINE.

164

DIPL Format

Mo DIPL file information is generated.

SUBROUTIMNE SCALES

Purpose

185

To fit data points from multiple arrays-to a restricted

size graph.

Usags

CALLL SCALES(ALENGTH, Arrayl ,NP1,K1, ...,
* ArvayN,NP_N,K_M) -

Description of Parameters

ALENGTH of

fit.

nurber

Frray i (1=212N) (max M=19)

NP1 tumber o

of

inches into which the data must

arvray of data points.

data points to be considered

in Hrray 1.

K i .ot indicates

gach

The
element of each
the
and

overall mirninum
arvay,
placed in
The minimum
This subroutines
LIME.

with subroutine

scaling consideration only for

Kth element in Array 1.
in

is placed

the

the . (NP_i*K) +1

and cverall increment is

((MP_1+1)*K_1)+1 element of each array.

increment

will always be integers,

is usa2ful when plotting multiple graphs

186
SUBROUTINE SYIMBOL

Purpose
To plot a string of symbols starting from arn indicated
location and proceeding in some specified direction.
The size of the symbols are indicated by the
pIogrammer.
Usage .
CALL SYMBOL (Coordt,...,CoordM,HGT,STG,Anglat, ...,
* » Angle-M~1,MNS, IMFO)
Description of Parameters
Coord 1 (1=i2N) : ccordinate in i-th dimension for
center of the first character in
symbol string.
HGT : height of a symbol; the character width
is computed as .T*height specified.
For legibility, height should be
at least 0.07 inches,

STG : symbol string in Hollerith.

Angle 1 (1£i8N-1) : angle hetween i-th and (i+1) st

dimension.

NS 1 number of symbols to be printed.

- IMNFG :

and should

DIPL Format

187

has no de dezfinition in the present system
be omitted.

STHBOL - - | g :
OPCOCE CO0RD N CQURD N HGT | ANGLE I ANGLE N-1 [~
+7 S PRI EIE S B R TS S b +13 - +13
--1 NS | SYMBOL 1 SYMBOL NS
+14 +15 —-- +15
Remarks
In the subroutine call, +the angles must be rsal;
however, they will be integers in the DIPL file.
If INFO doess appear, the opocode will be complemented,

and IMFO will

NS>0 The symbols are one or
MS=-1 One
Draw a blanked vector to the
MS=-2 One
Dy aw

symbol which 1is

i=

the“

symbhol which

a z=olid vector fto

become the op-modifier.

more hollerith characters.

an cn-center symbol index,

position of the symbol.
an on-center symbol index.
position of the symbol.

™

188

RAODITIONRL SUBROUTIMES FOR VISURL DISPLAYS

Some DIPL subroutines have been developed specifically
for visual graphic displays. These routines facilitate
modular "display” lists and variable intensity levels, since
most scopes operate thrdugh lists of wectors and have

programmable intensity selection.

SUBROUTINE. DFNSUB

Purpose

To “mark thes beginning of & set of DIPL plotting calls

which are to be considered a display subroutine.
Usage
CALL DFNSUB (MUMBER, IMFC)

Description of Parameters

NUMBER : identifying number for the display
subroutine '
INFO : has no definition in the current system

arnd should be omitted.

189

DIPL Format

DF H5UB
orcope | UMBER
+7 +3

Remarks

Al though NUMBER has op-modifier bit length, it is not
an op-modifier. | |

If INFC should be specified, +the opcode will be
complemanted, and IMNFQ - will be plasced in the op-
modifier field.

This opcode shall precede aAnd follow each display

subroutinge.

1940

SUBROUTINE ENDSUB

FPurpos=

To mark the end of a sequence of DIFL plotting calls

which define a display subroutine.
Usage
‘CQLL ENDSUE [MUMBER, INFO)
Description of Parameters

MNUMBER ! ildentifying numbiesr for the display

subroutine
IMFC : has no definition in the current system
and should ke omitted.
DIFL Format
The DFMSUE opcode and NUMBER iz placed in the DIPL

file to signal the end of the subroutine. (See DIPL
Format for SUBROUTINE DFNSUB.) '

. 191
SUBROUTINE DRAWSUB

Purpose

To - piot display subrouting MUMBER starting at location

KyYyoouo
Usagé

CALL. DRAWSUB(X,Y, ...,NUMBER, INFO)
Description of Parameters

PO (R : starting location +to begin plotting the

display subroutine.

NUMBER : number of the display subroutine to be
plotted.
INFO : has no definition in the current system

and should be omitted.

DIPL. Format

DRAWSUE '
OPCODE X ¥ | --- | HUMBER
+7 4] 4l 4] 14l omm 4E

Remarks=

If INFO specified, the opcode 1is complemented, and
INFO is placed in the op-modifier field. |

192

SUBROUTIMNE INTSTY

Purpose
To specify an intensity level on a wvisual display.
The intensity levels for each display are described
with each respective post-processor.
Usage
- CALL INTSTY (INT)

Description of Parameters

IMNT : intensity level

DIPL Format

INTSTY
Uk
arCOOE WHBEER
+7 +3

Remarls

Al though INT has op-modifier bit length,'.it is not

an op-modifier.

193
"SUPPRESS GRID" OPTICON

The IMLAC mini-computer offers a special "suppress
grid" mode on its graphics display. Although this
situation 1is not general throughout visual displays,
its lTiberal use by IMLAC users warrants the facility
nf a suppress grid option. It is incorporated in ths
novrmal PLOT calls as the INFO parameter, The call
will appear as follows:

CRLL FLOT(X,Y,I,INFO)

where X and Y are the coordinate walues, I indicates
the type of wvector to be drawn and IMNFO=1 indicates
suppressed grid reguested. If this option is not

regquired, the plot calls will simply be:
CHRLL FLOT(<,Y, 1)

All post-processors other than the IMLAC's will igrore
this option and will plot the type of vector at the
coordinates indicated.

Remarks

The plot opcode will he cdmp]emented and the wvalue
of IMFO will be placed in the op-modifier field., If
IMFO is not specified, the plot opcode will not be
compl emented.

194

- THREE AMND FOUR DIMENSIOMHL. FLOTTING

DIPL also supports 3- and Y-dimensional plot files
to aid users with the generation and storage of complex
data. The additional dimegnsions might ke used to
specify a "z-axis' and/or to assign color, intensity,
values, etc. to & particular point. The post-
PrOCESSOrS dascribed in this gulde are intended solely
for 2-dimensional plots, although 32-D and 4-D files
may be submitted to them. Two-dimsnsional post-
processors will plot the first two dimensionas only.
With the help of P.U.C.C.-supported subroutines and
documentation, the user may write his own “post-

processor” to utilize the information on the ({ile.

Rfter the normal, initial call to PLOTS and before
any calls involving 3-0 or 4-D data, the user must
change the number of plotting dimensions appropriately.
This is performed by a call to CHANGE, e.g.,

CALL CHAMGE (9, 3)
for 3-D plotting, and
CALL CHAMGE (3,4}

for 4-0 plotting. Al routines raquiring coordinate
data would now expect 3 ar 4 coordinate values rather
than two. HI1 subroutines are still usuable although
some may have lost their two-dimensional s meaning.
For example, in an x,y,z coordinate system, PAGE might

be used to delineate groups of data,

135

Some subroutines have been developed-specifically for
extended dimension plotting. Currently, these are
PLANE and HOLE-IN-PLAME. Additional subroutines will

ke gzenerated as multi-dimensional usages warrants.

SUBROUTINE PLANE

Purpo

Usage

Descr

s5

196

To specify a set of points which describe a plane.

CALL. PLANE (Arrayt, ... Arrayh, MNP, K)
iption of Parameters

Array 1 (11N} : array of NP coordinates of

dimension.

i-th

The mirimun wvalue of the array must

be stored in location NP*K+1 of RArray
il
The incremsnt per inch must be stored
in location (NP+1)*#K+1,

NP : the number of data points

K : indicates that only every Kth element he

placed on the DIPL file from each

of the arrays.

Since many 3~dimensional programs require

the

plane be ‘"closed”, i.e., that. the last coordinate

matchs the first coordinate, a warning

message

is

isswed if this does not occur. This is not an srrvor

condition so that the. DIPL file will be generated

exactly‘as specified.

~

D%PL Format

197

. 1
PLANKE J ‘
- Con ~- OR . ; -
ocope | T | regn | FORRE COORD \y, ¢ | COORL, 5
+7 18 L3 1+ ——— afE]14N-] wralt -
- | cooRD
Remarks - af+]1+N-1
- The DIFL format for FLANE is equivalent to the Typs

3 LINE format with the PLAMNE opcods replacing the LINE

opcade.

as

The

wectors

LIMNE routine.

intent

with

is that 2-D post-processors will
process a PLANE opcode by plotting the 13t 2 dimensions
solid

no or-center symbols in their

The number of points (NP) will appear negative in the

file.

SUBRO

Pﬁrpu

Usage

Descr

198
UTINE HOLE-IN-PLANE

52 ' ’

‘ <
To specify a set of points which describe s hole in
pre-defined plane. This voutine was developed to

=
faciltitate proper visualization.

CALL HOLE (Arravwl,...,ArrayMN,NP,K)
iption of Parameters

Array 1 (12i<M) : a array of NP coordinates of the i-th
dimension.
The minimum value of the array must
ke stored in location MNP¥K+1 of Rrray
i. '
The increment per inch must be stored

in location (MP+1)*K+1.
MP : the number of data points

K. : indicates that only every Kth element he
placed on the DIPL file from each

of the arrays.

Since many Z-dimensiconal programs require that the
hole be "closed", i.e., that the last coordinate matchs
the first coordinate, a warning message is issued if
this does not occur. This is net an ervror condition

so that the DIPL file ‘will be generated exactly as
specified.

N\

DIPL Format

HOLE J - .
opconE | M | rzgy | CPORO . yi--- | COORD 4 COORD, o) --
+7 +8 +3 +{471] - R R U Y S IE I B
o - CO0R
00 GN.H
- {47144 -1
Remarl:s

The DIPL format tor HOLE

zgquivalent to the

189

Type

3 LINE format with the HOLE opcods replacing the LINE
opcode. The intent is that 2-D post-processars will
process a HOLE opcode by plotting the 1st 2 dimensions
as solid vectors with no on-center symbols in thelr
LINE routine.

The rnumber of points (MP) will appear negative in the
file.

200

Useful COMPRS5S Subroutines

Six COMPRSS subroutines are available to facilitate
post-processar writing. . They are INITPP, PRCOP,
OPDUMP, GETBTS, CHAMGER and WRTBTS.

IMITPP

IMNITPP veads in the plotting constants table, TRBLE,
initializes the irnput and output file names and sets
up the file and buffer information in TRBLE. In
addition to this, INITFP incorporates an opcods-jump
table into THBLE which FRCOP, aﬁother service
subtoutine, uses. The following registers must be
et prior to the execution of INITPP:

(B7) -TRBLE-1

(BE) address of the opeode jump table

(®6) name of output device in hollerith
form

The opcode junp table is a set of 24 consecutive memory
locations - one for each opcoode. The lower 30 bits
of each word contains a jump instruction to a

particular process routine, e.g.,

JMPTHB EQ S0LID FPLOT SOLID VECTOR
+ EQ BLAMC FPLOT BLANKED VECTOR
+ EQ DoTS: FLOT DOTTED WECTOR

IMNITPP MUST BE INVOKED BEFORE NORMAL PROCESSING OF
- THE DIPL FILE CRN PROCEED.

201

PRCOP.

FPRCOP will read opcodes and thelr op-modifiers, 1if
they are present, from a DIFL file and jump to the
appropriate process routine. This routine is indicated
by the post-processor writer in the opcode jump table
originally sent to INITFP, Entry to PRCOP requires
the addiress of TRBLE:

[(BE) address of plotting constants table

If PRCOP cannot identify the opcode within a valid
range, it will return to the routine which called it.

Upon exit:

(BE) address of plotting constants table
(%3) opcode
(X2} op-modifier, if present

or =ign bit is set, if op-modifier

is not present
PRCCP uses registers:
R1,R2,RA3,A7 -

B1,B2,B5,86,07
%1, %2, %3, X6, K7

202

OPDUMP

OPDUMP will read the appropriate no. of bits from

“a DIPL. file according to the opcode it receives,
display a warning msssage 1in the user’'s dayfile and
re~execute PRCOP to get the next opcode. The purpose
of this routine is to allow partial brmcessing of DIPL
files, wherein either the opcode is 1inapplicable +to
the post-processor or the opcode has not yet heen
implemented. | '

OPDUMP will update the plotting constants table if
it receives a CHAMNGE opcode and will end the job if
it encounters a TERMINATE opcocode. A register dump
is provided for non-existent opcodes. OFDUMP uses
all registers,

The enfry in the opcode junp takle for each call to
OPDUMP should be:

+ EQ OFPDUMP

203

GETBTS

GETBTS allows from 1 to B0 bits of information to be read
from a file to a register. The following registers must
be set prior to the executicon of GETBTS

(A1) address of buffer pointer information
(TABLE+583)

(A3) address of plot file information
(TRBLE+5T) ’

(B7) number of bits to be read.

(1) huffer pointer imformation.

(X3) plot file information.

The information 1is returned right-justified in register
(X2). Bign extension is not provided so the Post-Processor

v

writer must carefully shift to check for negative numbers.
Entry point GETBTS uses registers:

R1,R3,A7 | '

B1,B82,B3,B7

RY X2, %3, 17

and returns

Bi=1
XT=-0

204

CHAMGER

CHANGER can be invoked to handle all CHANGE opcodes. The
following vregisters must be set prior to entry.

(A1) address of input buffer information
as set by INITPP (TRABLE+58)

(A2) address of input file information
as set by INITPP (TRBLE+S5T)

(A1) input buffer information.

(%3) input file information.

(X7) address of TABLE.

CHAMGER will read the element number and the new value
from the DIPL file and update the plotting constants
table, TABLE. Sines this routine may dynamicalTy Qary
execution field length and =storage allocation, Past-
Processors ~ay not wuwse biank COMMON =ms a means of

passing int semation betwesen routines.
Entry point CHANGER uses registers:
R1,A2,A3,R7
B1,B82,B3,8B7

X1 ,%2, X3, KT

and returns:

205

WRTBTS

One to sixty bits of information may be transferred
from a register to the plot file wusing COMPASS entry
point DRTBTS. WRTBTS expects input from the following

registers:

(A1) address of buffer pointer information

(TRBLE+53)

{A3) address of plot file information
(TRBLE+6D)

(X1} buffer pointer information

(X2) information bits, right-justified

(X3) plot file information
Entry point WRTBTS uses registers:
A4, R3,AT

B1,B2,B3,B7
X1, %2, %3, X7

Table 1. The Plotting Constants Tabkle

Date the plot file was created.

Rddress of dimension bit length takle
Address of dimension resolution table
Rddiress of dimesnsion window size table

Address of dimension relative origin table

Op-modifier bit length
Mumber of plotting dimensions

Symbol angle lncremesnt

Symbol height increment
Symbol height bit length
Symbol angle bit length

Mumber of symbols bit lTength

Primary scale [actor

ELEMEMT INIT DESCRIFPTION
TRBLE+D
1 *+60
2 *+63
3 *+66
4 *+63
‘5 Reservied
6 Reserved
T) Opcode bit length
3 12
9 2
10 2.10
11 100.0
12 10
13 10
14 7
15 7 Symbol bit length
16 0 Symbol type
17 1RT Upper case switch
18 1RL Lower case switch
19 1.0
20 1.0

Secondary scale factor

Table 1, cont.

ELEMENT INIT DESCRIPTION
21 1 Physical page number
22 P1 of LORD card
23 P2 of LOHD card
24 P3 of LOHD card
25 PY of LOHD card
26 Open
27 Open
28 Dpen
29 Open
34 Open
31 Reserved
32 -0 Walue of last opcode used by PLOT
33 2 Solid vector opcode
34 3 Blanked vector opcode
35 4 Dotted vector opcode
36 5 Single point opcode
37 6 Symbkol opcode
38 T Single cartesian axis opeoodes
338 8 Pauze for opsrator action opcods
40 9 Line opcode)
Y1 10 Page opcode
42 11 Diszsplay subroutine opcode
U3 12 Hole-in-plane opcode
4y 12 Plane opcode
45 14 Terminate plotting

207

ELEMEMT INIT
46 15
4T 16
4B 17
493
50
51
52
53
S4
55
56
57 -
58 -
53 -
60 -
61 12
62 12
63 12
by 12
b5 400.0
66 400.0
67 400.0
68 4ng, o
69 10.0
70 10.0

Table 1, cont.

DESCRIPTION

Change data value

Display subroutine call)l copcode

Set intensity opcode
Resesrved

Reserved

Reserved
Reserved
Resarved
Reserved

Reserved

Reserved

Input file information as set by IMITFP

208

Input buffer information as set by INITFP

Output buffer information as set by INITFP

Output file information as set by IMITPP

Field bit
Field bit
Field bit
Fizld bit

length
tength
length
Tergth

for
for
for

for

dimenslion
dimensiaon
dimension

dimension

L3 N =

4

Resolution (lines/inchk) for dimesnsion

Resolution (lines/inch)
Resolution (lines/inch)
Resolution (linesd/inch)
Window size (in inches)

Window size (in inches)

for
for
for
for

far

dimension
dimension
dimension
dimension

dimension

N = 2 W N

ELEMEMT INIT

10.0
10.0
Q

Lo R

Tahie 1,

DESCRIPTION

Wirdow size (in

Window size (in

Relative
Relative

Relative

Relative

origin
origin

orilgin

origin

cont.

irnches) for dimension

3

irnches) for dimension Y

for
fowr

for

for

dimension
dimension

dimension

dimansion

1

w N

203

210

Table 2. CDC 6500 to ANSCII Symbcl Conversion Table

SYMBOL HOLLERITH ECD
(null} 00
A 12-1- 01
B8 2-2- 02
c 12-3- 03
D 12-4- 0y
E 12-5- D&
F 12-8- 06
G 12-7- 07
H 12-8- 10
I 12-9- 11
J 11-1- 12
K 11-2- 13
L 11-3- 14
M 11-y- 15
N 11-5- 15
0 11-6- 17
P 11-7- 20
Q 11-8- 21
R 11-9- 22
= 0-2- 23
T -3- 24
U B-y- 25
v f-5- 2E
m 0-E- 27
% 0-7- 30

SYMBOL ASCII SYMEOL

ASCII
rull noo sue n3z
A 101 a 141
B 102 by 142
C 103 & 143
D 104 d 14y
E 105 € 145
F 1086 { 146
G 107 £ 147
H 110 h 150
I 111 i 151
J 112 A 152
K 113 I 153
L 114] 154
M. 115 m 155
™ 116 r 156
0 117 0 157
P 120 B 160
Q 121 q 161
= 122 r 162
= 123 S 163
T 124 t 164
U 25 u 165
W 126 v 166
1! 127 w 167
® 13 % 170

Table 2, cont.

SYMEOL HOLLERITH BCD
Y 0-8- 31
z 0-9- 32
0 0- a3
1 1- 34
2 2- a5
3 a- 38
4 4 - 37
5 5- oy
6 E- 41
7 7- 42
8 a- 43
9 g- 4y
+ 12- 45
- 11- 45
* 11-8-4 47
/ 0-1- 50
(0-8-4 1
) 12-8-4 52
% 11-2-4 53
= 8-3- 51
space 55
, 0-8-3 56

12-8-3 57
= 0-8-6 i
[8-7- 51

211

SYMEOL RASCII SYMECL SCII
Y 131 y 171
z 132 z 172
i - 0B0 CR 015
1 061 LF 012
2 062 FF 014
3 063 HTRE 011
4 0EY WTHE 013
5 055 ESC 033
3 066 Fs nay
7 087 GS 035
q 070 RS 036
g 071 S 037
+ 053 | T4
- 055 _ 37
052 BELL 007
/ 057 EM 631
(050 [173
) 051 ¥ 175
D4y 2 Q4 E
= 075 ~ 176
sSpace DEL 177
. EOM 003
. : EOT o0y
« 0 S0H 001
[33 STX 002

SYMBOL HOLLERITH

Tabhle 2, cont.

ECD
] 0-8-2 B2
: B2~ 53
» 81— &4
- 0-8-5 &5
v 11-0- - g6
~ 0-8-7 61
1 11-8-7 70
v 11-8-6 7
< 12-0- 72
> 11-8-7 73
< 8-5- 7

> 12-8-5 7

- 12-8-6 76
: 12-8-7 77

21

SYMBOL ASCII SYMBEOL BSCII
] 135 ERQ 0os
. 072 ACK 006
' D47 % 045
4 043 50 016
" 042 SI 017
" 140 DLE 020

A 138 OC1 021
] 041 DC2 022
< 07y DC3 nz3
> 07h DC D2y
7 077 M n2g
@ 1 SYM 028
, 3 ETE 027
: 073 CAN 030

VITH

gy

213

VITH
Thomas Leslie Boardman, Jr. was born September 10,
1948 in Cleveland, Ohio. In 1362, his family moved to

Indianapolis, Indians where he attended North Central High
School graduating in 13E6.

Mr. Boardman entered Purdus University in September,
1366 earning a Bachelor of Scierce degree 1in Mechanical
Engineering in PRugust, 1970. During that time, he spent
surmers working at Lewis Research Center (NASA) and at the
General Elsctric Lamp Division in Cleveland, Ohio.

.

M. Boardmari continued in Mechanical Engineering at
Purdue University, working as a Research HAssistant in that
department and as & systems programmer for the Computing
Center, completing a Master of Science in Rugust, 1971,

Since that time, Mr. Boardman has been employved as

an instructor in Mechanical Enginesring wher ne has

1]

developed and taught a two course sequence covering computer

graphics and timesharing in enginsering design. In
addition, he has continued as a systems programmer f{or the
Computing Center, working on graphics and timesharing system

software.

